Stability of COBOL Clones

Jan Harder, Nils Gode
University of Bremen
Bremen, Germany

{harder, nils}@informatik.uni-bremen.de

Abstract

Code clones are said to threaten the maintainability
of software systems. Changes to one cloned fragment
must be propagated to the other fragments, which
might increase change effort. Hence, different studies
have investigated the stability of cloned code and com-
pared it to the stability of the non-cloned code. How-
ever, only open-source systems have been regarded so
far. We conducted a study on two industrial COBOL
systems, measuring the clone stability. In this paper,
we present the results and compare them to the ob-
servations of the previous studies.

1 Introduction

Copy&Paste is an indispensable strategy in program-
ming. Its use, however, leads to duplicated passages of
source code—clones—that might decrease the main-
tainability of the code base. Changes applied to a
copied passage likely need to be propagated to the
other occurrences, increasing the change effort.

Different studies compared the stability of cloned
and non-cloned code, that is, the likelihood of these
parts of the code to change. If cloned code were less
stable than non-cloned code, then the costs of main-
taining it would be higher. With his study on five
open-source systems, Jens Krinke was the first to go
into the matter [3]. He concludes that—contrary to
the initial assumption—clones are even more stable
in general. However, if only deletions of code are re-
garded, clones are less stable.

We varied and extended his study, using a more
accurate token-based method and a more fine grained
stepping between the versions analyzed [1]. Our re-
sults support Krinke’s findings. We also investigated
the impact of different definitions for a clone (chang-
ing the similarity threshold and size of the clones) and
found smaller clones to be more stable than larger
ones. Furthermore, we observed that exact clones are
less stable than clones with slight differences.

The impact of four different clone detection tools
was measured in a third study [2]. The authors come
to the same conclusion that cloned code is more stable
in general. Nevertheless, they found that the relation
of the stabilities may be converse in early development
stages.

So far, all studies were limited to open-source sys-

Marcus Rausch
Debeka-Group
Koblenz, Germany

Marcus.Rausch@debeka.de

tems, which are developed in an open process and ex-
posed to permanent public review and discussion. It
has not been investigated, if the properties found in
the open-source systems also apply to industrial ones,
which are developed under different circumstances.

2 Case Study

In this paper we extend our previous study with the
analysis of two productive COBOL systems.

2.1 Subject Systems

The two industrial systems are developed by the
Debeka-Group, one of the top-ten companies in Ger-
many’s insurance and home-savings business. Debeka
offers a variety of insurance and financial services. The
systems we have analyzed are written in COBOL and
have been in use for more than ten years. System lv-la
(385 KSLOC) is dedicated to life insurance whereas
zw-wb (585 KSLOC) provides functionality for com-
mission calculation, which is a common concern to
different services. For each system we analyzed all ver-
sions that went productive within a time period of at
least two years—in both cases more than 500 versions.

2.2 Clone Stability

The stability of source code can be measured by its in-
verse: the instability. To measure instability, a lexical
analysis is performed. For each token in each version of
the analyzed system, we can tell whether it is part of a
clone or not, applying clone detection. We can further-
more detect whether and how it was changed from the
previous version using a token-based diff. The insta-
bility is now defined as the number of tokens changed
divided by the total number of tokens. In all versions,
this measurement can be applied to the cloned part of
the code as well as to the non-cloned part. Both val-
ues can be compared to determine which part exposes
higher instability.

We measure the instability separately for additions,
deletions and modifications of tokens. This way we
calculate six instability values—one for each change
type in cloned and, respectively, non-cloned code. As
an example, t4c denotes the instability (¢) of cloned
code (C) in respect to additions (A). Analogously, we
define tan, tpe, tDN, LMC, LN, Where N stands for
non-cloned code. For an extensive description of our



method, please refer to our previous publication [1].

2.3 Study Procedure

Using our incremental clone detector iclones, we iden-
tify clones in all versions. The detection of changes
is embedded in this process. Two preprocessing steps
are applied to the COBOL code prior to the clone de-
tection: First, generated code is removed. Second, to
avoid that reported clones cross syntactic boundaries,
special delimiters are inserted between procedures.
We used the following parameters to the clone de-
tector: The minimum clone length is set to 50, 100,
and 150 tokens. The type parameter has two vari-
ations so that only exact clones respectively clones
with different variable names or literals or gaps are
detected. The three length settings and the two type
settings multiply to six combinations per system.

2.4 Results

As in our previous study, we first investigate the sta-
bility for one clone detector setting in detail. Then we
evaluate the impact of different parameter settings.

2.5 Stability

The instability values for exact clones with a minimum
token length of 100 are shown in Figure 1. Each bar
denotes the percentage of tokens that were affected by
the respective change type in the cloned or non-cloned
part of the code. The leftmost bar, for example, indi-
cates that 0.00578% of the cloned tokens were added
during the analyzed period. The instability of the non-
cloned code is always higher for the COBOL systems,
resembling previous findings.

ArgoUML is a system, we analyzed in our previous
study. Its stability values are provided for compari-
son to the industrial systems. There are two notable
differences: First, the distance between the instabili-
ties of cloned and non-cloned code is bigger for the
COBOL systems. That is, COBOL clones are much
more stable compared to non-cloned code as in the
open-source systems. The difference is caused by the
high instability of non-cloned COBOL code, while the
instability values for the clones do not differ signifi-
cantly among the three systems. The higher relative
stability of COBOL clones could be caused by the in-
dustrial environment and the programming language.
Developers reported to us that they tend to refrain
from changing code that is known to work. Instead it
might be preferred to create a copy if the same code
is needed for another program. The second difference
in the results is, that regarding deletions, clones in
the COBOL systems are also more stable than non-
cloned code. This contrasts to the properties of all
open-source systems that have been analyzed so far.

2.6 Parameter impact

In the open-source systems we observed that the pa-
rameter settings have an impact on the stability val-

0.025
(==
B9 N

= e

0.02 [

%]

0.015 (.

0.01

0.005 r J:
0 —

Iv-la zw-wh

Instability

ArgoUML

Figure 1: Instability of source code

ues. This is also true for the COBOL programs, but
only to a lower extent. In the industrial code, we
also found the tendency that exact clones expose less
stability than clones with differences. Nevertheless,
some properties that are identical among the open-
source systems differ among the COBOL ones. In lv-la,
smaller clones are more stable than larger ones; but
in zw-wb, the opposite is the case. These differences
between the systems are only small, though.

3 Conclusion

Our results show that the general conclusions of previ-
ous studies also apply to industrial COBOL systems.
Most important, cloned code is more stable than non-
cloned code. The stability of cloned code, however, is
more distinctive than in the open-source systems—the
COBOL clones are even more stable. Reasons for this
could be the maturity of the code and the special de-
velopment process which leads to duplicates that are
not meant to change in the future. The exceptional
instability to deletions, that we observed for clones
in open-source systems, could not be found in the in-
dustrial programs. Despite these slight differences, the
conclusion remains that the presence of clones does
not decrease stability in general. Nevertheless, clones
still may decrease maintainability by other means, like
increased comprehension costs or inconsistent changes
that introduce bugs.

References

[1] N. Gode and J. Harder. Clone Stability. In Proc. of
the CSMR ’11, pages 57-66. IEEE.

[2] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is dupli-
cate code more frequently modified than non-duplicate
code in software evolution?: an empirical study on
open source software. In Proc. of the IWPSE-EVOL
’10, pages 73-82. ACM.

[3] J. Krinke. Is Cloned Code more stable than Non-
Cloned Code? In Proc. of the SCAM 08, pages 65-74.
IEEE.



