
Research in Cloning Beyond Code: A First Roadmap

Elmar Juergens
Technische Universität München, Garching b. München, Germany

juergens@in.tum.de

ABSTRACT
Most research in software cloning has a strong focus on
source code. However, cloning occurs in other software ar-
tifacts, as well. In this paper, we summarize existing work
on cloning in other software artifacts and provide a list of
research questions for future work.

Categories and Subject Descriptors
D.2.13 [Softw. Eng.]: Reusable Software—Reuse models

General Terms
Experimentation, Measurement

Keywords
Clone detection beyond code, roadmap

1. STATE OF THE ART
We briefly summarize work on cloning in code, require-

ments specifications, models and tests below.

1.1 Code
A lot of work has been done on cloning in source code.

Through it, we know how to detect clones in large code
bases and have empirical data for many open source and
industrial software systems. We understand (some of) its
causes, its consequences and its evolution. A comprehensive
overview is given by Koschke [6] and by Roy and Cordy [10].

Without doubt, source code is the artifact type that is
best researched and understood in terms of cloning. The
insights we have gained on cloning in code can guide the
investigation of cloning in other artifact types.

1.2 Requirements Specifications
In [5], we analyzed 28 real-world requirements specifica-

tions written in natural language (English or German, over
8,500 pages in total). The extent of cloning varied substan-
tially: while some had very little, over 50% of the content of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC 2011 May 23, 2011, Waikiki, Hawaii, USA
Copyright 2011 ACM 978-1-4503-0588-4/11/05 ...$10.00.

Figure 1: Cloning in Use Cases

others was duplicated. Figure 1 depicts cloning in 150 use
cases from an industrial system. Each rectangle represents
a use case, its height corresponding to the length of the use
case. Colored stripes depict clones. Just as for code, if a
change is made to a requirement clone, it may need to be
performed multiple times—impeding maintenance.

1.3 Models
Models can fulfill different roles. On the one hand, they

are often employed as specifications or communication arti-
facts, which developers manufacture into code manually. On
the other hand, they can serves as input to code generators,
replacing code as the primary development artifact. Cloning
has been investigated both for specification (UML) and code
generation (MATLAB/Simulink and SCADE) models:

UML. In [7], Liu et al. proposed a suffix-tree based algo-
rithm for clone detection in UML sequence diagrams. They
evaluated it on diagrams from two industrial projects, dis-
covering 15% of duplication in the set of 35 sequence dia-
grams in the first and 8% of duplication in the 15 sequence
diagrams of the second project. In [11], Störrle discussed
cloning in UML domain models and outlined MQlone as a
tool prototype for its detection.

MATLAB/Simulink. In [1, 2], we presented an approach
to detect clones in dataflow models and evaluated it on in-
dustrial MATLAB/Simulink models from MAN and BMW.
Both case studies analyzed large models (20454 vs. 98251
blocks) and uncovered substantial amounts of cloning (37%
in the MAN study). In [9] and [8], Pham et al. and Nguyen
et al. present further clone detection algorithms for Mat-
lab/Simulink models. They report discovery of clones in
models freely available from MATLAB Central.

SCADE. In [4], Huhn and Scharff independently extended
our clone detector ConQAT [2] to work on SCADE models.
They presented results from two models from rail automa-
tion industries research projects. The first model comprised
634 nodes, containing 44.5% of cloning. The second model
comprised 1264 nodes, of which 53.5% were cloned.

1.4 Test Cases
For manual system tests, test cases are often in the form of

natural language documents that describe tester actions and
expected system outcomes. We have analyzed 167 system
test cases from an industrial business information system, all
written in English. We discovered a clone coverage of 54%
and over 1000 individual clones. Manual inspection revealed
frequent duplication of sequences of interaction steps. Some
of the interactions, specifying both the test input and the
expected system reaction and state, occurred over 50 times.

1.5 Summary
Cloning is not limited to source code: we have seen evi-

dence for cloning in models, requirements specifications and
test cases. Cloning in these artifacts—just as in code—can
impede engineering activities. However, our knowledge on
cloning in artifacts other than code is still small. Future
work, as outlined below, is required.

2. RESEARCH DIRECTIONS

Detection. Most existing detection algorithms operate on
sequences, trees or graphs. Non-code artifacts can be repre-
sented as such, as well. However, properties of the artifact
influence how well a specific algorithm works. For exam-
ple, detection algorithms for data flow models ignore lay-
out information. They thus cannot directly be applied to
Max/MSP models [3], where spatial layout carries seman-
tic meaning. Which existing detection algorithms work how
well for which artifact types?

Causes. Some causes of code cloning probably apply to
other artifacts as well, while others must be expected to
differ. For example, insufficient expressiveness of abstrac-
tion mechanisms, which is frequently given as a reason for
cloning in code, also causes cloning in MATLAB/Simulink
models [2]. However, no weak abstraction mechanism con-
strains the creation of natural language documents. Since
understanding its causes is necessary for control, we need to
characterize and quantify causes of cloning across artifacts.

Extent and Evolution. No two artifact types have the
same forces (stakeholders, languages, tools, ...) that drive
their creation and evolution (and thus of their clones). Re-
sults valid for one might thus not apply to another. We
need empirical studies to help us understand the extent and
evolution of cloning for each artifact type.

Infection. Does cloning in one software artifact type af-
fect cloning in others? In [5], we have seen indication that
cloning in requirements specifications can cause redundancy
in the implementation: both as code cloning and as inde-
pendent redevelopment of similar functionality. Was this a
peculiarity of the analyzed systems, or can we observe this in
general? Are there further infection paths, such as between
requirements and models or test cases?

Economic Trade-offs. There is no single best treatment of
clones. While some might best be removed, others are more
beneficial to keep but track; yet others can be ignored en-
tirely. Even worse, the factors influencing clone management
decisions must be expected to vary across artifact types. We
thus need a better understanding of the economic trade-offs
of clone management alternatives for all artifacts.

Management Tools. Recent work has suggested clone
management tools for code to help developers cope with ex-
isting duplication. How could analog tool support look for
requirements specifications, models or test cases?

Further Artifact Types. The list of software artifacts
treated in this paper is far from complete. How about
cloning in the others? In process models, system architec-
tures, configuration files, feature models, schemas, ...?

3. ARTIFACT REPOSITORY
Clone detection research has benefited from the availabil-

ity of open source code. While code is publicly available,
requirements specifications, models and test cases are less
so. We need a repository of real-world software artifacts of
all types to facilitate research into cloning in them. Such a
repository could also contain cloning benchmark data.

4. REFERENCES
[1] F. Deissenboeck, B. Hummel, E. Juergens,

M. Pfaehler, and B. Schaetz. Model clone detection in
practice. In Proc. of IWSC ’10, 2010.

[2] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz,
S. Wagner, J.-F. Girard, and S. Teuchert. Clone
detection in automotive model-based development. In
Proc. of ICSE ’08, 2008.

[3] N. Gold, J. Krinke, M. Harman, and D. Binkley.
Issues in Clone Classification for Dataflow Languages.
Proc. of IWSC ’10, 2010.

[4] M. Huhn and D. Scharff. Some observations on scade
model clones. In Proc. of MBEES ’10, 2010.

[5] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel,
B. Schaetz, S. Wagner, C. Domann, and J. Streit. Can
clone detection support quality assessments of
requirements specifications? In Proc. of ICSE ’10.

[6] R. Koschke. Survey of research on software clones. In
Duplication, Redundancy, and Similarity in Software.
Dagstuhl Seminar Proceedings, 2007.

[7] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting
duplications in sequence diagrams based on suffix
trees. In Proc. of APSEC ’06, 2006.

[8] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Accurate and efficient structural
characteristic feature extraction for clone detection.
Proc. of FASE ’09, 2009.

[9] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and
T. Nguyen. Complete and accurate clone detection in
graph-based models. In Proc. of ICSE ’09, 2009.

[10] C. K. Roy and J. R. Cordy. A survey on software
clone detection research. Technical Report 541,
Queen’s University at Kingston, 2007.

[11] H. Störrle. Towards clone detection in uml domain
models. In Proc. of ECSA’10, Companion Volume,
ECSA ’10, 2010.

