
Recommending API Methods
Based on Identifier Contexts

Lars Heinemann Benjamin Hummel
Technische Universität München, Garching b. München, Germany

{heineman,hummelb}@in.tum.de

ABSTRACT
Reuse recommendation systems suggest functions or code
snippets that are useful for the programming task at hand
within the IDE. These systems utilize different aspects from
the context of the cursor position within the source file be-
ing edited for inferring which functionality is needed next.
Current approaches are based on structural information like
inheritance relations or type/method usages. We propose a
novel method that utilizes the knowledge embodied in the
identifiers as a basis for the recommendation of API meth-
ods. This approach has the advantage that relevant recom-
mendations can also be made in cases where no methods are
called in the context or if contexts use distinct but semanti-
cally similar types or methods. First experiments show, that
the correct method is recommended in about one quarter to
one third of the cases.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms
Algorithms, Experimentation

Keywords
Software Reuse, Recommendation System

1. INTRODUCTION
Reuse of existing code is often regarded as the best ap-

proach to achieve tremendous increases in developers’ pro-
ductivity, improvements of software quality, and reduced
development cost [6, 7]. The goal is to integrate existing
and well-tested software components, libraries, and frame-
works1 instead of reinventing the wheel by writing the code
from scratch. Reaching reuse rates of 90% and more [5] can
typically only be achieved by integration of multiple differ-
ent libraries from different sources, accumulating to large

1While all of these have a slightly different focus and intent,
we will refer to all of these as libraries here.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SUITE ’11, May 28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0597-6/11/05 ...$10.00.

amounts of code. The challenge for a developer is to locate
a reusable piece of code for a certain task within the libraries
used by the project.

As a possible solution for this task, several search en-
gines have been proposed, such as Google Code Search2 and
Koders3, which both work on the textual level, or Code Con-
jurer [4], which uses test cases for querying and retrieving
code. To use a search engine, however, the developer has to
actively decide to look for reuse opportunities and formulate
a query based on his intent. A slightly different approach is
taken by reuse recommendation systems, such as Rascal [9]
or CodeBroker [12]. There, the developer is proactively and
automatically informed of possible reuse options based on
the current piece of code he is working on. This relieves the
developer from formulating queries and can bring up possi-
bly reusable code snippets even when the developer did not
consider a search worthwhile.

Position Statement. Existing reuse recommendation sys-
tems work on the syntactic structure of the program; for ob-
ject oriented systems this is provided by the different classes
and methods and their signatures. Based on prior knowledge
of which methods are often used together or in the context
of certain types, the system can suggest methods based on
the types and methods most recently used by the developer.
This obviously works well for highly specialized data types
and APIs, where only a couple of methods are applicable
to a certain kind of object. However, this approach is weak
when confronted with more general types that are used in a
large variety of different contexts. As an example, consider
the following Java code snippet from an open source system:

i f (ang le != getAngle ()) {
f l o a t ang leDe l ta = angle − getAngle () ;
super . setAngle (ang le) ;

The only type used is float and only getter/setter methods
from the project’s own code are called. As the number of
methods that can work on floats is huge, the system is likely
to recommend methods that are not relevant for the devel-
oper’s current task. However, looking at the identifiers it is
obvious that the program is dealing with angles, so suggest-
ing trigonometric functions, such as Math.sin(), could be
helpful. Based on the observation, that about 70% of a sys-
tem consist of identifiers [2] which carry crucial information
about a developer’s intent, we suggest to base recommenda-
tion of methods on the content of these identifiers.

2http://www.google.com/codesearch
3http://www.koders.com

Contribution. We describe an approach for mining com-
mon sets of terms found in the identifiers preceding a method
call. Based on this data, our system recommends methods
using the identifiers from the code a developer is currently
working on. We report on preliminary experiments showing
that our approach is able to recommend the “right” method
in about one quarter to one third of all cases.

2. APPROACH
The proposed approach is based on the fundamental heuris-

tic that code fragments using similar terms within the iden-
tifiers also reuse similar methods. It consists of an upfront
mining process that extracts knowledge about the associa-
tion between terms and reused methods from existing soft-
ware systems. The obtained data, which is stored on disk, is
then used for automatically recommending methods based
on context information of newly developed code.

2.1 Association Mining
The association mining process extracts associations be-

tween combinations of terms and methods from existing
code. This is done by parsing the source code files of a
software system and analyzing each method call4. We uti-
lize the Eclipse Java compiler (ECJ) to obtain the abstract
syntax tree (AST) for a Java class. After parsing, the AST
is traversed and each method call located within a method
body is analyzed. For each method call, we attempt to iden-
tify a configurable number of non-blank, non-commented
lines within the same method body preceding the considered
method call. This is obviously not possible for all method
calls in the source code (e. g., method calls in the first line of
a method body). From the preceding lines and the line with
the method call (up to the position of the call itself), we
determine all identifiers used. The identifiers can be formed
of several words (e. g., sortedCustomerList). In Java there
is a common convention to use the camel case notation for
compound identifiers. We use this convention to split iden-
tifiers into distinct words. Identifier parts consisting of a
single character are discarded. We furthermore process the
split identifiers by performing word stemming, i. e., reducing
inflected words to their stem. This has the advantage that
syntactically distinct words that refer to the same concept
are treated equally5. The result of this procedure is a set of
terms. Consider the following code snippet as an example:

t ry {
r e ad F i l e () ;

}
catch (IOException e) {

St r ing message = e . getMessage () ;
JOptionPane . showMessageDialog (nu l l ,

message) ;
}

For the method call JOptionPane#showMessageDialog, the
set of context identifiers in the 3 preceding lines is:

{IOException, e, String, message, getMessage}.

After splitting and stemming the set of terms is:

{io, except, string, messag, get}6.
4including constructor calls
5For instance the words “reading”, “reader”, “read” would all
be reduced to their common stem “read”
6the single-character identifier e was discarded

1 1 1 1 1 1 0 ...

0 0 1 1 1 1 1 ...

...

re
ad

JOptionPane#showMessageDialog

Throwable#getMessage
file io ex

ce
pt

str
ing
me
ssa
g

ge
t

...

...

Figure 1: Association matrix

The approach constructs a matrix from the method calls
that associates a combination of terms with a method call.
Each call is represented by one row within this matrix. The
row consists of a binary vector denoting the combination of
terms used in the identifiers in the vicinity of the method
call and the name of the method that was called. The term
vector has as many components as there are terms used in
the identifiers in the complete source code. A component of
“1” indicates that the term occurred and a “0” that it did not
occur respectively. Figure 1 shows the association matrix for
the two Java API calls in the example code snippet.

2.2 Method Recommendation
To use the association matrix for recommending meth-

ods, our implementation answers queries formed of a set of
terms extracted from the context of the current cursor po-
sition by returning a set of method recommendations. This
is achieved by transforming the set of terms into its cor-
responding binary vector representation. Then, its nearest
neighbors, with a certain maximum distance in the vector
space are determined. The distance of two sets of terms cor-
responds to the Hamming distance of their binary vectors,
i. e., the number of components at which the two binary vec-
tors differ. The methods of these neighbors are then recom-
mended in the order of their number of occurrences among
these neighbors. The maximum distance is increased until
the desired number of method recommendations is reached.

3. EXPERIMENTAL RESULTS

Setup. In order to evaluate our approach, we assessed how
well it can be used to recommend methods from the Java
API, i. e., we considered only method calls to the Java API.
We used 12 open source systems of various types and sizes
known to us from previous studies with a total of 3 MLOC
for the experiments.

We implemented the association matrix construction as
well as the evaluation on top of our open source quality anal-
ysis framework ConQAT7, which provides—among others—
basic functionality for static code analysis.

To evaluate our approach, we analyzed for a given method
call in a system and its context, how well our approach can
predict the method call from the terms contained in the iden-
tifiers in the preceding lines of the method call. Thereby we
experimented with different values for the look back i. e., the
number of lines from the context considered for extracting
the identifiers. We queried the matrix for the 5 best rec-
ommendations8. The recommendation set was considered

7http://www.conqat.org
8In our opinion, a developer is willing to inspect 5 recom-
mendations, even though the approach is not able to recom-
mend useful methods in all situations

Table 1: Recommendation Baseline
Project CR

DrJava 14%
Freemind 15%
HSQLDB 25%
Jabref 15%

correct, if the method actually used was among the recom-
mended methods. More formally, we computed the fraction
of methods that are correctly recommended (CR) as follows.

Let MCWC be the set of all method calls with an appro-
priate context in the source code of the system, method(c)
the method targeted by the method call c, query(T) the
result of a query to the association matrix with the set of
terms T and terms(c) the set of terms in the context of the
method call c. CR is then given by:

CR =
|{c ∈MCWC|method(c) ∈ query(terms(c))}|

|MCWC|

Recommendation Baseline. As a comparison, we com-
puted a baseline for the ratio of correct recommendations
for a trivial approach that for a given project always rec-
ommends the 5 methods used most frequently within that
project. We considered all method calls with a context of at
least one line. The results are shown in Table 1.

Cross Project Recommendation. We evaluated how
well the association matrix constructed from a set of projects
can be used to recommend methods for a different project.
From the 12 study objects, we chose 4 projects for evaluating
cross project recommendation. For each of the 4 projects,
we constructed the association matrix from the other 11
projects. Table 2 shows the results of the evaluation. The
column LB denotes the look back in lines. OMC repre-
sents the overall number of method calls to the Java API in
the project. MCWC contains the subset of those method
calls with an appropriate context where our approach could
make recommendations. Column DM shows the number
of distinct methods targeted by these method calls, which
gives an intuition about the difficulty of the recommendation
problem. The fraction of the method calls with an appro-
priate context that were correctly recommended is given in
column CR.

Table 2: Cross Project Recommendation
Project LB OMC MCWC DM CR

DrJava
1

21,090
16,167 (77%) 1,747 31%

2 15,244 (72%) 1,656 29%
3 14,347 (68%) 1,573 26%

Freemind
1

8,725
6,726 (77%) 1,255 32%

2 6,090 (70%) 1,122 29%
3 5,588 (64%) 1,061 27%

HSQLDB
1

9,735
8,404 (86%) 1,006 33%

2 8,113 (83%) 964 32%
3 7,833 (80%) 931 30%

Jabref
1

21,350
17,020 (80%) 1,471 39%

2 16,167 (76%) 1,387 37%
3 15,375 (72%) 1,330 34%

Table 3: Intra Project Recommendation
Project LB OMC MCWC DM CR

DrJava
1

9,993
7,880 (79%) 1,115 39%

2 7,462 (75%) 1,049 38%
3 7,052 (71%) 1,002 36%

Freemind
1

5,427
4,239 (78%) 929 26%

2 3,805 (70%) 814 23%
3 3,488 (64%) 771 19%

HSQLDB
1

6,031
5,331 (88%) 755 38%

2 5,158 (86%) 722 36%
3 5,004 (83%) 702 35%

Jabref
1

9,654
8,006 (83%) 1,076 43%

2 7,592 (79%) 1,022 43%
3 7,226 (75%) 995 40%

Intra Project Recommendation. We additionally eval-
uated the quality of the recommendations within a single
project by building the association matrix from a subset of
the project and predicting the method calls for the remain-
ing part of the project. This is a relevant scenario since in
many projects an existing code base is extended and main-
tained. Intuitively it can be expected that there is more
homogeneity in the term-method associations within a sin-
gle project. We therefore expect better recommendation
results. We randomly selected half of the files of the project
and computed recommendations for all method calls in the
other half of the files. Table 3 shows the results of the eval-
uation for intra project recommendation.

4. DISCUSSION
The results show, that the correct method is in the 5 meth-

ods recommended by our approach in one fourth to one third
of the cases. Furthermore, the results are significantly im-
proved compared to the baseline heuristic of always recom-
mending the 5 most frequently used methods. The exception
is HSQLDB, where the gain is less pronounced. This can be
explained by the distribution of method calls in HSQLDB
that already leads to a high baseline value.

When learning the association matrix from a part of the
project itself, the relative amount of correct recommenda-
tions increases in most cases. This is expected, as the vo-
cabulary and naming conventions are assumed to be more
consistent within a single project than between projects. In-
terestingly, for the Freemind project, the opposite is the
case. One explanation is the smaller size of the project that
leaves less examples to extract the associations from.

One central parameter is the number of previous lines we
use as context. Interestingly, using 2 or even 3 lines of
context leads to lower numbers of correctly recommended
methods. This seems counterintuitive at first, as using more
information is expected to improve the results. Currently,
our best guess is that the additional lines of context disturb
the prediction as often as they aid it. Information from the
lines before might be often unrelated to the current method
call. Overall, between 64% and 88% of the method calls pro-
vide sufficient context to allow our approach to be applied.
This indicates that even for a required context of 3 lines,
there are sufficiently many locations where our approach is
applicable.

5. RELATED WORK
Mapo [13] mines API usage patterns from open source

repositories and recommends code snippets that illustrate
usage scenarios of a queried API method. The mined pat-
terns describe API methods that are frequently called to-
gether in a sequence. While Mapo recommends API usage
examples based on an API method that is already known to
the developer, our method can suggest methods from APIs
yet unknown to the developer.

Rascal [9] stores the method usages of classes in a database
and uses this information to recommend methods for a cur-
rently developed class that is similar to classes in the database.
It employs different collaborative filtering approaches to com-
pute the similarity between classes. While this approach
is based on similarity between the method calls of whole
classes, our method uses the identifiers in the context of a
few source lines preceding a method call.

Strathcona [3] suggests relevant code in a repository of
code examples. This tool automatically extracts structural
properties like inheritance relations or method calls of the
code currently developed and matches them with those of
the code in the repository. While Strathcona recommends
code examples, our method suggests API methods.

CodeWeb [10] mines patterns of library reuse based on
association rules known from shopping basket analysis. An
example of a mined rule would be that classes deriving from
a certain class usually override a certain method of the de-
rived class. While CodeWeb is a browser for reuse patterns,
our method aims at recommending API methods.

CodeBroker [12] proactively suggests useful yet unknown
methods within the Emacs editor by analyzing the program
under development and performing a similarity analysis with
methods in a repository. The similarity is defined in terms of
programmer documentation and method signatures. When
the developer enters a JavaDoc comment and (optionally)
declares the signature of the desired method, the tool au-
tomatically creates a query from this information that is
used to locate methods that provide the required function-
ality. While CodeBroker requires the desired functionality
to be described (comment, signature) for making recommen-
dations, our approach uses the context to suggest methods
that are likely to be needed next.

ParseWeb [11] and Prospector [8] can answer queries of
the form Source object type → Destination object type by
suggesting method sequences that take the source object as
input and yield the destination object as a result. While
these tools require the source and destination type of the
desired method to be known, our method can suggest meth-
ods with yet unknown or unused types.

Code Conjurer [4] automatically infers queries for reusable
classes from the tests written in advance to the implemen-
tation according to the test-driven development technique.
In contrast to our approach, this method requires test cases
to be written for the retrieval of reusable functionality.

Bruch et al. [1] propose an approach for improving the
relevance of suggestions made by code completion systems.
While they use an approach very similar to ours based on
the k-nearest-neighbor algorithm to determine the similarity
of code contexts, they consider method calls as the context.
Moreover, they focus on recommending relevant methods
from a particular class requiring the object on which the
method is called to be known.

6. CONCLUSION AND FUTURE WORK
We described a reuse recommendation system based on

the content of identifiers. From patterns mined from other
systems or existing parts of the system, our tool infers meth-
ods to be used given only the identifiers from the code the
programmer is currently working on. Our experiments indi-
cate, that our approach is able to suggest the correct method
in about every fourth to third case (when an appropriate
code context is available).

More research is required to understand for which meth-
ods our approach works well or not. It is also open, whether
our approach is correct for the same cases as those based
on program structure, or if a combined approach could lead
to better results. Other ideas for improving the results are
to respect synonyms when searching methods, for example
by integrating the WordNet9 ontology, or applying differ-
ent comparison strategies for the context, such as weighting
identifiers by distance from the method call. Finally, the
recommendations should be evaluated in experiments with
developers. Therefore, it might be relevant to exclude meth-
ods well-known to a developer from the recommendations.

7. REFERENCES
[1] M. Bruch, M. Monperrus, and M. Mezini. Learning

from examples to improve code completion systems. In
ESEC-FSE’09, 2009.

[2] F. Deissenboeck and M. Pizka. Concise and consistent
naming. Software Quality Journal, 14(3):261–282,
2006.

[3] R. Holmes and G. C. Murphy. Using structural
context to recommend source code examples. In
ICSE’05, 2005.

[4] O. Hummel, W. Janjic, and C. Atkinson. Code
conjurer: Pulling reusable software out of thin air.
IEEE Software, 25(5):45–52, 2008.

[5] I. Jacobson, M. L. Griss, and P. Jonsson. Making the
reuse business work. IEEE Computer, 30(10):36–42,
1997.

[6] C. Krueger. Software reuse. ACM Comput. Surv.,
24(2):131–183, 1992.

[7] W. Lim. Effects of reuse on quality, productivity, and
economics. IEEE Software, 11(5):23–30, 2002.

[8] D. Mandelin, L. Xu, R. Bod́ık, and D. Kimelman.
Jungloid mining: helping to navigate the API jungle.
ACM SIGPLAN Notices, 40(6):48–61, 2005.

[9] F. Mccarey, M. Cinnéide, and N. Kushmerick. Rascal:
A recommender agent for agile reuse. Artificial
Intelligence Review, 24:253–276, 2005.

[10] A. Michail. Data mining library reuse patterns using
generalized association rules. In ICSE’00, 2000.

[11] S. Thummalapenta and T. Xie. Parseweb: a
programmer assistant for reusing open source code on
the web. In ASE’07, 2007.

[12] Y. Ye and G. Fischer. Information delivery in support
of learning reusable software components on demand.
In IUI’02, 2002.

[13] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei.
MAPO: Mining and recommending API usage
patterns. In ECOOP’09, 2009.

9http://wordnet.princeton.edu

