
On the Socialness of Software

Walid Maalej
Technische Universität München

Munich, Germany

maalejw@cs.tum.edu

Dennis Pagano
Technische Universität München

Munich, Germany

pagano@cs.tum.edu

Abstract—Conventional software engineering processes are
rather transactional and lack a common theory for the involve-
ment of users and their communities. Users are regarded as
pure consumers, who are, at most, able to report issues. In the
age of easy knowledge access and social media, discounting the
users of software might threaten its success. Potentially valuable
experiences and volunteered resources get lost. Frustrated users
might even meet in social communities to argue against the
software and harm its reputation.

The goal of this research is to revolutionize the role of users,
dissolving the boundaries to software engineers. We propose a
novel framework for increasing the software socialness, being
the degree of user and community involvement in the software
lifecycle. Our framework consists of a benchmark, a process,
and a reference architecture. The benchmark includes metrics for
assessing and monitoring software socialness. The process enables
engineering teams to systematically gather and exploit user
feedback in the software lifecycle. The context aware reference
architecture integrates social media into software systems and the
engineering infrastructure. It observes users’ interactions while
they use the software and proactively collects in situ feedback.

Index Terms—Social media, user feedback, user community,
product development, context awareness

I. INTRODUCTION

In software engineering projects, single users are typically

involved in eliciting and validating requirements. Communities

of users are also increasingly receiving attention through active

participation in open source projects, or through participation

in user conferences and online support forums of popular

software applications. However, there is no common and

comprehensive theory for the involvement of users and their

communities in the software lifecycle. Users are neither an

integral part of the software engineering processes, nor of the

software systems themselves.
On the one hand, software engineering processes are rather

transactional and focus on a small number of representative

users to give feedback in requirements engineering activities.

Contributing to other activities such as testing, documen-

tation, integration, or design is exceptional. On the other

hand, user feedback mechanisms in software systems are not

standardized and rather ad hoc – if they exist at all [7].

Typically the software “core features” are more important

than those requested by users and described in communities.

Communication channels that allow for collaboration among

users or between users and developers are usually decoupled

from a software system and its development infrastructure.
The lack of common means for a systematic user involve-

ment in the software lifecycle has disadvantages:

• There are little indicators about the real software usage

apart from download or sales numbers. Such indicators,

if they exist, are marketing-oriented, expensive, and pe-

riodic. They focus on the opinion of single users and

ignore how much influence users have among themselves

and on the software. Consequently, instead of foreseeing

trends software providers rather react on changing market

characteristics and user requirements.

• In the age of Google and Wikipedia barriers for acquiring

knowledge about the software and its technologies are

low. Software vendors loose valuable resources, if knowl-

edgeable users are unable to share their experiences.

Driven by their own needs to improve the software, these

users often develop macros, extensions, and workarounds

that stay on their own machines.

• Exigent and frustrated users who feel their voices are

ignored, are among the first who discontinue the usage

of a software1, especially if a simple web search leads

to a “better” open source alternative. Such users can

even harm the reputation of software. In the worst case,

they organize Facebook and Twitter campaigns against

the software instead of contributing to improving it2.

This paper introduces a framework, which aims at revolution-

izing the role of users in the age of social media and easy

knowledge access. The goal of our framework is to increase

the socialness of software, by making the involvement of users

and user communities a first order concern of software systems

and engineering processes. The framework consists of three

parts, which represent the contributions of the paper. First, a

benchmark and a set of measures allow vendors to monitor

and assess the socialness of their software. Second, a social

software engineering process model (called SNAIL) ensures

the involvement of users in the software lifecycle. Third, a ref-

erence architecture enables the development and maintenance

of social software involving users and communities.

Section II presents the benchmark and its measures. Section

III describes the SNAIL process and gives examples how it can

be applied. Section IV introduces the reference architecture

and enabling technologies. Section V discusses related work

and the feasibility of our framework. Finally, Section VI

concludes the paper.

1for instance http://tech.fortune.cnn.com/2011/06/27/600-filmmakers-sign-
complaint-about-final-cut-pro-x/

2for instance http://ihatelotusnotes.com or http://dreckstool.de/hitlist.do

2011 Ninth IEEE International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.146

865

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.146

865

2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing

978-0-7695-4612-4/11 $26.00 © 2011 IEEE

DOI 10.1109/DASC.2011.146

864



II. BENCHMARKING OF SOFTWARE SOCIALNESS

We define the socialness of a software system as the degree

of involvement of its users and their communities in the

software lifecycle. Software users can be involved either by

actively working on a specific engineering activity, or by

influencing a management or an engineering decision about the

software. In the first case, users might suggest modifications

and enhancements, perform tests, provide user support, main-

tain documentation, implement features, fix bugs, or organize

events. In the second case, users might give feedback, vote

for a specific decision, or influence the opinion of others.

User communities represent an additional ground of the users’

involvement on a group basis. Users externalize important

knowledge in interest groups, and share their common interests

about the software.

Socialness in practice ranges from little involvement

(e.g. public bug tracker) to a complete involvement in open

source communities. Figure 1 illustrates the categories of

software systems according to their socialness. Users of

transactional software are pure consumers with little to no

possibility to contribute and promote the software. Popular
software instead involves a large community as an indirect

important means to create additional value. Collaborative
software has few users, who are actively involved in the

development process by providing ideas and partly conducting

engineering activities. Finally, social software involves a large

community of users, who actively contribute to the develop-

ment of the software and pro-actively enlarge the community.

Note that as opposed to collaborative software, collaborative
media represent specific collaboration systems (e.g. Wikis or

groupware). Similarly, as opposed to social software, social
media represent specific systems for social networking and

interaction (such as Facebook and blogs). Software can be

collaborative or social, independently from its features and

domain (e.g. social office, or social hotel booking system).

To assess socialness, we measure both the involvement of

the single users and the community as a whole. We propose

four measures for each dimension and semantic scales to

quantify each of these measures (summarized in Table I).

Collaborative
Software

Social
Software

Transactional
Software

Popular
Software

Community Involvement

U
se

r 
In

vo
lv

em
en

t 

Figure 1. Benchmark for Assessing Software Socialness (following [5]).

A. Community Involvement Measures

Community involvement measures assess the sustainability

of a user community’s social structure, and how involved it is

in the development decisions and activities.

a) Community Size: defines the number of known com-

munity members, including users (friends and followers) and

contributors (fans and fanatics). The community is the basis

for getting contributions and evidence of collected feedback.

Collaborative web-based services such as Facebook, Amazon,

or Google are typical systems with large communities3.

b) Community Activity: denotes how active a community

is in terms of communication volume and topic variation

[2]. Communication volume is the total number of messages

distributed by the community members during a specific

time period. Topic variation is the number of topics and the

distribution of messages among those topics each during a

specific time period.

c) Community Interweaving: denotes the ratio of con-

tributors in the whole community. Contributors actively partic-

ipate in the software engineering process, either by performing

particular activities such as development, management, and

dissemination or influencing decisions about the evolution

of the software. Typically, successful free and open source

software has a high interweaving ratio as the developers are

also users of the software. Gnome e.g. has more than 2,500

people committing source code to the repository [9]. Counting

other users4, who are writing or translating documentation,

testing new features, reporting bugs, or answering emails, this

number gets much larger.

d) Community Attractiveness: denotes the growth in

terms of member gain and loss. It shows the ability of the

software to attract and retain members to its community.

B. User Involvement Measures

User involvement denotes any kind of information exchange

between the user and the engineering team. This includes

friends and followers who just post comments on their blogs or

accept to be observed to improve the software usage, as well

as the active contribution via performing a particular activity.

e) Contribution Quality: distinguishes between qualita-
tive and quantitative contributions. Qualitative contributions

consist of subjective, “rich” data, such as words, pictures, and

objects. Quantitative contributions lead to numbers and statis-

tics. Typical qualitative contributions are source code artifacts,

feature requests, or comments in product blogs. User polls and

opinion surveys are typical quantitative contributions.

f) Contribution Explicitness: measures the willingness

of users to contribute and is correlated to the contribution

effort. User contribution might be explicit, if the user has the

intent to provide the input, or implicit, if the user uninten-

tionally provides information. Users can implicitly contribute,

e.g. when they are observed in their environment to elicit

useful information. Other examples are the collection of usage

3http://www.facebook.com/press/info.php?statistics
4http://www.gnome.org/get-involved/

866866865



Table I
SOCIALNESS OF SOFTWARE: COMMUNITY AND USER MEASURES.

Measure Question addressed Value range

Community
Involvement

Community Size How many members does the software community have? Few - Many
Community Activity How is the communication volume and topic variation in the community? Low - High
Community Interweaving How is the ratio of contributors in the whole community? Minority - Majority
Community Attractiveness How is the ratio of member gain and member loss? Low - High

User
Involvement

Contribution Quality What is the quality of the contribution? Qualitative - Quantitative
Contribution Explicitness Is the contribution intended? Explicit - Implicit
Contribution Time Does the contribution occur during the user tasks? Sync - Asynchronous
Contribution Means Where can users contribute? Integrated - External

data, such as Eclipse Usage Data Collector, the Microsoft

Customer Experience Improvement Program5, and the Adobe

Product Improvement Program6. Observing users during the

usage of the software leads to a better understanding of their

needs and the identification of new requirements. The scientific

observation method is commonly used in behavioral science

as well as in software engineering research.

g) Contribution Time: describes the synchronization of

the user contributions. This ranges from synchronous in-

teractions to asynchronous interactions. Asynchronous inter-

actions result in retrospective contributions and user input.

Issue trackers represent a typical example for asynchronous

interactions. In contrast, with synchronous interactions the

communication between users and developers occurs in real-

time. For example, developers working on a particular bug

might get their questions answered in real-time by the users.

Consequently, users might get to know what the development

team is currently working on. As more and more software gets

connected and users become online, synchronous contribution

is technically feasible. The advantage of synchronous contri-

butions is that the communication happens in context. Users

can report bugs or describe their needs, while actually using

the software and not afterwards.

h) Contribution Means: describes whether users can

provide feedback in situ or need to use a specific external

tool or service. Contribution means are integrated, if users

have the possibility to provide feedback while actually using

the software, or external, if users have to leave the application

and interrupt their workflows for contributing.

III. SNAIL: THE SOCIAL ENGINEERING PROCESS

Conventional development processes involve users only

in a limited and transactional fashion. Although developers

gather user input during various activities in requirements

engineering, this feedback is collected separately from further

development activities. Users and developers react on their

respective feedback rather than collaborating directly. User

communities, if they exist at all, are not promoted system-

atically.

We propose a social software engineering process called

“SNAIL” that thoroughly and continuously involves users by

5http://www.microsoft.com/products/ceip/EN-US/default.mspx
6http://www.adobe.com/misc/apipfaq.html

Community Observation

User Observation

Proactive
Feedback

Update

Systematic
Analysis

Decision

Engi-
neering

Time 

Figure 2. SNAIL - A Social Software Engineering Process.

establishing interaction channels and integrating user com-

munities. Figure 2 depicts the main activities in the SNAIL

process. Community activities as well as the interactions of

the user with the application environment are continuously

observed (snail tentacles). All other activities are performed

in an iterative way (snail shell). Users may provide feedback

about the system during its usage, and are proactively asked to

do so in problem situations. Individual user feedback and com-

munity activities are analyzed systematically in order to filter,

aggregate, and prioritize the information, and identify possible

conflicts. The engineering team works on the feedback and

uses community channels to connect to users for discussions

and clarifications. Engineering and management decisions

about the software are made on a social basis, considering

the opinion of the community, and are communicated back to

the community. Finally, updates and changes are published,

restarting the cycle again. SNAIL can be regarded as an

orthogonal extension to comprehensive development activities

to increase their social nature and the socialness of developed

software. In the following we discuss the main activities of

SNAIL.

A. User Observation

To improve the understanding of the circumstances un-

der which users provide feedback, context information [7]

(e.g. sequence of user interactions, artifacts used, or execution

environment) is captured continuously and communicated to

engineers (implicit contribution). This allows to support users

when communicating issues, requesting changes requests, or

rating features. User contributions thus emerge in situ (i.e. in-

tegrated means) while actually using the software, leading

867867866



SNAIL Community Center 

Help others 

Documentation 
Discussions 

Help other users with 
their problems. 

Knowledgebase 

Get information 

Documentation 
Discussions 

Browse through the know- 
ledgebase or ask questions. 

Knowledgebase 

Development corner 

Feature request list 
List of known errors 

Contribute to make the  
software better. 

Source code repository 

Provide feedback 

Report error 
Request modification 

Report on your exper- 
ience. 

Report experience 

Future directions 

Request feature 
Vote on features 

Influence the future 
development directions. 

Vote on release plan 

Test bed 

Beta download page 
Release plan 

Perform tests of early 
versions. 

Source code repository 

Figure 3. The SNAIL Community Center.

to a more intuitive and higher quality contribution. Finally,

context information enables engineering team to reproduce and

understand a given feedback.

Few systems already monitor their user interactions to

facilitate their improvement and evolution. The Eclipse devel-

opment environment for instance collects usage information7

and sends it to the development team. This information is then

used by developers, to e.g. optimize the software usability or

to assess the importance of specific features, which can be

helpful in prioritizing the development effort.

B. Community Observation

Users of social software have the possibility to organize

themselves in communities, where they can share their expe-

riences and discuss specific features. Social software integrates

social media and proactively suggests to comment specific

features or request other users’ help in problem situations.

Developers also participate in these communities to provide

useful information, share insider knowledge, get insights, and

directly communicate with users (community interweaving).

The user community should be systematically observed,

due to the inherent dynamics of communities. Synergies

between the opinions of different users emerge, leading to

more perspectives, focused, and mature input. The “I like”

button in Facebook or “+1” in Google Plus are examples in

existing systems that foster these synergies while allowing for

additional feedback. The resulting content is more focused,

because users rather vote on existing content than providing

new one. Additionally content becomes automatically ranked

based on its acceptance in the community.

Figure 3 shows a mockup for the user community center

of a fictitious system called the SNAIL environment. Users

may request new features and modifications, vote on existing

proposals, report errors, or externalize their experience with

the system. These community actions are observed by the

SNAIL environment to understand the community needs and

7http://www.eclipse.org/epp/usagedata/

expectations. Several existing systems provide online portals

to enable similar community activities, mostly for support

and marketing purposes. For example the Skype community

portal8 allows users to access the project knowledge base,

suggest new features and modifications, or meet other users

for general discussions.

C. Proactive Feedback

User feedback is collected continuously throughout the life-

cycle of the social software. To this end, users are proactively

asked to provide their feedback and input to improve the

software. For instance, feedback can be explicitly requested

if problem situations are detected while users interact with

the software. Users may provide qualitative feedback (natural

language), specify feedback category (e.g. modification or

enhancement request), and select feedback type (e.g. positive

or negative). Feedback data leverages the analysis of common

usage patterns, helping to understand individual user behavior

and problem situations.

There are few systems that proactively trigger actions from

their users. Woogle [4] for example is a Wiki extension, that

proactively asks users to contribute to specific topics where

they are expected to have experience. These requests are based

on the needs of other users for more information on these top-

ics. With this technique Woogle reaches a more homogeneous

match between needed and provided information.

D. Systematic Analysis

Gathered individual user feedback and community activities

need to be analyzed in a systematic way to allow engineers to

draw conclusions about the current usage status. Engineers for

example need to know if there are common usage problems

or errors that have to be solved. Managers on the other hand

need to understand trends and sentiments or might want to

assess the community involvement.

The goal of a systematic analysis is twofold. First, by filter-

ing, aggregating, and prioritizing user feedback and commu-

nity activities the amount of information for engineers will be

reduced. Second, a systematic analysis will identify conflicts

regarding the application under development. Conflicts arise

since different users might have different, possibly conflicting

preferences, needs, and expectations about the system.

Systematic analysis can deal with individual user feedback

as well as community activities. Examples for analysis results

include statistics about beta tests, documentation, ongoing

discussions and sentiments, feature requests, error reports, ex-

perience reports, and social feedback on release plans. Google

analytics9 performs similar analyses on the user community of

web pages. It includes statistics about the usage of a web page,

grouped by characteristics of its users. Further, it provides

conclusions about lost opportunities and success criteria based

on when users leave web sites, which is an indicator for their

sentiments.

8http://community.skype.com/
9http://www.google.com/analytics/index.html

868868867



SNAIL Feature Requests 

Influence future directions 

Request new feature 
On this page you can request new features and vote on existing ones. 

Dennis 
(17 features) 

Creator: 

votes 

1746 

���

Add a PDF export feature. 
Currently files can only be saved in the proprietary SNL 
format. Interchange with other platforms would be a very 
important feature. View comments Add comment 

Walid 
(19 features) 

Creator: 

votes 

1031 

���

It would be helpful to be able to compare two documents. 
Currently this is only possible using a workaround. 

View comments Add comment 

Figure 4. SNAIL Social Feature Requests.

E. Engineering Decision

The analysis and interpretation of individual user feedback

and community activities triggers actions in several cases. For

instance, if an error has been revealed it has to be fixed,

or in the case of a high demand for a feature, the feature

might have to be implemented, and release plans might have

to be adapted. We subsume these actions under the term

“engineering decisions”. A social system should give users the

possibility to influence engineering decisions by giving social

feedback (i.e. vote, rate, or comment).

In Figure 4 we illustrate how feature requests can be

prioritized by users, indicating the needs of the community,

and thus influencing the decision which features to implement.

The mockup is inspired by the existing commercial system

UserVoice, which provides collective feature request and vot-

ing capabilities in the form of a social media enabled online

community portal. UserVoice can be personalized for specific

products, and reveals a prioritized list of the needs of the user

community to the developers of the product.

F. Update

To create awareness about the impact of their contribution,

users are informed about engineering decisions and rationale.

The according information is sent back to the individual users

as well as the community. Further, the changes to the software

themselves are propagated back to the users – starting the

SNAIL cycle again.

There are examples of similar activities in current systems.

UserVoice for instance lets users know when the development

of specific features they have proposed has started, and keeps

them informed about the status. Moreover, several software

vendors continuously give their users access to the latest

software builds while in beta state.

IV. REFERENCE ARCHITECTURE FOR SOCIAL SOFTWARE

In this section we describe a context-aware software frame-

work that supports the social development process. The pro-

posed framework enables integrated user contributions and

������	
���
�	����
������������

��������
�������

��������	
����������


���������	���
�������

�������	
��
��
�
������
��

��������	
����������


���������	�����	������
�������

�	��������	���
��������

������	
����������������������������

��������

����	�� ���	��������

����	�� ���	��������

��!"	���
����������

�������	
��
��
�
����
��
�

#	�����������	
���

�����������������

Figure 5. Software Framework Enabling Social Software Engineering.

fosters user communities for arbitrary software systems. Figure

5 shows an overview of the framework architecture and how

it interacts with target application, engineering environment,

and community media. The framework is designed using a

client-server architectural style, with the social engineering
client running together with the target application in the usage

environment and communicating over the internet with the

social engineering center. In the following we illustrate the

main components that constitute the framework.

A. Context System

The context system provides context elicitation and process-

ing facilities. The elicited context includes information related

to the user (e.g. user interactions) and the target application

(e.g. application state). Hereby, the context system uses sensors

to observe the target application, its runtime environment, and

the operating system. Processing facilities then aggregate the

collected context information and produce new semantically

rich knowledge. For instance, user interactions are analyzed

to identify repetitive patterns which could denote problem

situations. Semantic web technologies (i.e. ontologies) are

used to represent context information and facilitate its pro-

cessing. Data mining and information retrieval methods, such

as frequent pattern mining and clustering provide means to

process the acquired context data.

B. User Feedback System

The user feedback system continuously and proactively

collects individual feedback from users. User feedback can

be triggered in three ways. First, by the context system,

when it detects a problem situation based on the gathered

context information (implicit contribution). Second, if the user

explicitly wants to give feedback on a specific feature or

situation. Finally, feedback can be requested on a regular basis,

869869868



SNAIL Feedback 
Report 

Provide feedback 
Use this form to report on your experience. 

This report will contain additional context information that 
helps to understand your experience. 

Share with the community 

      I agree to make this experience report public to create 
awareness about my experience in the community. 
� 

Show additional information 

I did not understand the export dialog. It said export to, but 
instead it only saved the document to the specified folder.


Tag your report 

Use tags to help other users find your report and to help 
engineers understand your experience. 

export, usability, difficulty


Mark similar reports 

Context information included 

SNAIL has found reports that are similar to yours. Help to 
focus by selecting relevant similar reports. Show similar reports 

Figure 6. SNAIL Feedback Report.

e.g. after a new release, after a modification, or after defined

time periods. Users may provide feedback while actually using

the application (integrated, synchronous contributions).

Figure 6 shows how an according feedback report for

social software might look like. Users may provide qualitative

feedback in the form of natural language, specify feedback

category (e.g. modification or enhancement request), and select

feedback type (e.g. positive or negative). Feedback is typically

shared publicly in the community, but can also be selected

to be private. Users can additionally select similar reports to

facilitate feedback analysis and focus provided information.

Moreover, users may tag the report to help other users find

their feedback and further facilitate the analysis of the con-

tribution. Tags are proposed based on already existing tags

in the community. Finally, the user feedback system creates a

report containing the specified feedback, including all specified

information as well as relevant context information.

C. Community Center

A software community can emerge in principal in two

different ways. Either with existing all-purpose social media

systems such as online forums or Facebook groups (e.g. Mi-

crosoft Office10), or on a designated platform created and

maintained by the engineers (e.g. Skype community). The

community center represents the entrance point for the users

to get involved in the software community in our reference

framework. It provides facilities for users for instance to

request new features or modifications, give social feedback on

existing proposals, report errors, or externalize their experience

with the system.

10http://www.facebook.com/Office

D. Feedback Channels

There are two channels for user feedback and back-feedback

in the proposed framework. First, feedback can be com-

municated using the internal connection between the social

engineering client and social engineering center. This channel

allows the system to send gathered context information to the

social engineering center and is in particular useful for private

feedback. Second, feedback can be provided and discussed

over social media channels (i.e. in user communities). This

channel is suitable for public feedback and fosters important

social properties (cf. Section II). Figure 6 illustrates how users

may choose to publish their feedback in the user community.

E. User Feedback Analysis System

The user feedback analysis system systematically analyzes

feedback provided by the users of the target application. This

analysis can in principal be performed in four steps [8]. First,

included domain concepts are identified using text mining

and information retrieval techniques. In a second step, user

feedback is aggregated according to the identified domain

concepts, which can be done using unsupervised clustering

techniques such as bisect k-means. To further reduce the

amount of diverse information, user feedback can be filtered

and prioritized in a third step. To this end, the feedback

relevance for both users and engineers can be measured. In a

fourth step, conflicting user preferences can be identified using

social network analysis techniques. Group recommendation

techniques can further support users proactively while creating

their preferences to reduce or even avoid conflicts.

F. Back-Feedback System

The back-feedback system is in charge of providing feed-

back about the impact of their contribution back to the users.

Further, it establishes a channel for clarification requests and

discussions. To this end, it connects to the user community

using the social media bridge, or communicates directly with

the social engineering client of the specific user. Certain events

may be of private interest for the user, and could be posted on

the classic social media channels. For example "Walid received

10 kudos for proposing a feature that is now being released."

or "Dennis just proposed a new feature for Open Office.".

G. Social Media Bridge

The social media bridge bundles all interfaces to communi-

cate with different social media services in a standardized and

extensible way. The social engineering client uses the social

media bridge to publish user feedback in user communities

and receives updates once a discussion emerges. In the social

engineering center, the social media bridge also aids in the

process of selecting responsible engineers for specific user

feedback by connecting to the according network. Further, it

establishes a connection to the user communities as well, to

allow engineers to react on community feedback.

870870869



V. DISCUSSION

A. Related Work

To our knowledge, there is no previous published research

on making users and user communities an integral part of

software applications and software engineering processes.

However, there is relevant related work that either focus on

in situ gathering of individual user feedback, or exploiting

users’ communities by using social media.

1) Gathering of User Feedback in Context: Recently sev-

eral authors suggested to continuously and remotely gather

user feedback, enabling software teams to adjust their applica-

tions to changing needs and requirements [7]. Seyff et al. [12]

claim that future applications should support users in providing

feedback about their needs at runtime. They introduce a mobile

app called iRequire, which allows users to document their

needs in situ, using photos, videos, sound, and text comments.

The authors conducted a first study that shows the feasibility

of tool-supported requirements elicitation. They envision self-

adaptive systems that adapt to users’ needs without the help of

engineers. Similarly, Schneider et al. [11] propose a framework

that allows users to provide feedback about large IT ecosys-

tems as e.g. in a university. The authors suggest that users

themselves annotate the type of feedback (e.g. complaint)

and the context where the feedback applies (e.g. a particular

subsystem) to facilitate analysis of the collected data. The

framework also enables to collect physical context objects to

help understanding and processing the feedback.

Our work is based on the same assumption that con-

textual information about the users is a major enabler for

understanding their feedback. However, we also assume that

the user’s context and feedback must be correlated with the

community dynamics for a qualitative and representative need.

We suggest integrating the observation of both the community

and the single user into the software engineering process

by using social media and context frameworks. Moreover,

a major difference of our approach is the integration of the

feedback into the applications themselves, instead of using an

additional tool for submitting needs enriched with contextual

information. This makes the user feedback a part of the user’s

task and reduces the context switching to submit feedback.

In addition to the physical context such as the location or a

physical event (which can be captured in a movie), we suggest

the work context as well as the user’s characteristics such as

capabilities and experience with the application. Finally, our

approach also integrates the back communication channel from

the engineering team to the users. Our goal is to make the users

part of the software system as well as the software engineering

process – i.e. tightening the socialness of software engineering.

2) Exploiting User Community: Related work on observing

and analyzing users communities spans from studies which

mine community artifacts in order to find hidden trends to

systems that manages community contributions.

On the one hand, there exists a large body of research

on extracting knowledge from community artifacts (such as

forum discussions), including analyzing the semantics of the

discussions, discovering trends, and identifying opinion lead-

ers [13]. In a recent empirical study [9] we found that in their

blogs open source developers mostly discuss requirements and

product features with other developers and end users. Glance

et al. [3] visualize the popularity of blog topics over time and

show a correlation with real world trends. Pal et al. investigate

the identification of themes and sentiments in social media

by use of social network analysis and data mining [10]. We

propose to exploit these results and mining techniques to

communities of software applications and predict trends in

application domains. These studies show that it is possible to

extract users’ opinions about specific products or features from

user blogs, which supports the feasibly of our approach.

On the other hand, several social media enabled systems

like UserVoice11, Get-Satisfaction12, and IdeaStorm13 already

allow users to collaboratively share new ideas and vote on

existing suggestions. Users prioritize these requests according

to the community needs. Bajic and Lyons [1] found that

these collaborations focus users’ efforts, which leads to more

homogeneous feature requests and easier decision on how the

application should evolve. With our approach users are spared

explicitly entering feedback in a manual and transactional

fashion. We suggest a process and an architecture for a pro-

active semi-automated sharing of feedback by collecting users’

context and integrating it into the social media.

B. Feasibility and Challenges

We propose a social engineering process and a reference

architecture that enable engineering teams to develop and

maintain social software systems. To this end, we systemati-

cally combine activities that are already performed in existing

engineering processes, yet in an isolated way. For instance,

few systems observe individual users to allow engineers to

optimize usability or prioritize feature requests (e.g. Eclipse

usage data collector). Many software vendors observe and

support online communities around their products to be able

to assess sentiments and communicate directly with their users

(e.g. Skype community portal). Moreover, users already may

request and vote on new features, and thus influence engineer-

ing decisions (e.g. UserVoice). In open source communities

such as GNOME, users even assume the role of engineers.

Google Plus14 or the Apple iOS SDK15 represent examples for

user involvement in software testing. The software is opened

to the community while still in beta stage. Users then test

the software while using it. We propose to systematically

plan and conduct these activities and integrate them into

software systems and engineering infrastructures. To evaluate

the feasibility of this approach as a whole, researchers will

have to carry out long term studies of according systems, users,

and communities.

The general applicability of the proposed framework and

the degree of software socialness that can be reached depend

on (a) the system under development, (b) the type of users,

11http://uservoice.com, 12http://getsatisfaction.com, 13http://ideastorm.com
14http://plus.google.com, 15http://developer.apple.com

871871870



and (c) on how these users can contribute. For instance, user

involvement in security critical systems might not be suitable,

whereas office tools and web applications can be improved by

their user community.

The realization of our approach (in particular the implemen-

tation of the reference architecture) bears several technical and

cultural challenges:

• Scalability. The quantity of user contributions in social

systems imposes limits on how this information can be

processed by engineers. With increasing number of users

and frequent contributions manual analysis techniques

become infeasible.

• Contribution Quality. If users contribute without profes-

sional support, resulting information content and quality

is unpredictable, what can lead to misunderstandings [7],

[14]. Users might express system properties using their

own, possibly inhomogeneous terminology. In general,

informal data like natural language is hard to analyze

automatically because of its high degree of freedom.

• Conflicting Contributions. Different users will have dif-

ferent, possibly conflicting preferences and expectations.

To make decisions from this data, conflicts have to be

identified and resolved. Continuous user contributions in

social systems can lead to frequent conflicts, complicating

manual identification and resolution techniques.

• Integration. Involving users and their communities re-

quires a high integration effort. Several systems and

technologies, including users’ environments, social me-

dia, and engineering environments have to be monitored

and integrated. These systems might run on different

platforms, have different interfaces, and contradicting

licenses.

• Privacy, Usability, and Incentives. Collecting context in-

formation raises questions about privacy and control. The

challenge is therefore to use sensitive information and

ensure that it will not be abused. By doing so, usability

trade-offs might emerge (e.g. the user is asked to confirm

particular operations) possibly leading to less incentives

for contributing useful information.

• Company Culture. Involving users and communities in

engineering activities represents a paradigm shift for most

conventional and in particular commercial organizations.

The acceptance of the presented model depends on the

company culture and is correlated with emerging benefits.

The main building blocks have already shown to be technically

feasible. In TeamWeaver [6] we implemented a context elicita-

tion and interpretation framework for the domain of software

development itself. We instrumented the work environment of

developers, such as code editors, email programs, browsers,

and test tools. The collected data is used to trigger recom-

mendations (proactive feedback) for sharing and accessing

useful information. Moreover, existing research successfully

addresses challenges of analyzing user contributions in large-

scale requirements engineering settings [8].

VI. CONCLUSION

We aim at increasing the socialness of software, making

user and community involvement a first order concern in

software lifecycles. To this end we propose a benchmark, a

process model, and a reference architecture. The benchmark

includes metrics for assessing the socialness of a software sys-

tem. The engineering process SNAIL systematically observes

single users and their communities, enabling developers to

systematically gather and exploit contributions in the software

lifecycle. The reference architecture enables the development

and maintenance of social software. Future challenges for

researchers and practitioners include conflicting contributions,

privacy, and the acceptance in conventional organizations.

ACKNOWLEDGEMENT

We thank Raian Ali and Hans-Jörg Happel for their valuable

feedback. This work has been supported by the FastFix project,

which is funded by the EC, grant agreement no. FP7-258109.

REFERENCES

[1] D. Bajic and K. Lyons. Leveraging social media to gather user feedback
for software development. In Proceeding of the 2nd international
workshop on Web 2.0 for software engineering, pages 1–6. ACM, 2011.

[2] B. S. Butler. Membership Size, Communication Activity, and Sustain-
ability: A Resource-Based Model of Online Social Structures. Informa-
tion Systems Research, 12(4):346–362, Dec. 2001.

[3] N. Glance, M. Hurst, and T. Tomokiyo. BlogPulse: Automated trend
discovery for weblogs. In WWW 2004 Workshop on the Weblogging
Ecosystem: Aggregation, Analysis and Dynamics, volume 2004, 2004.

[4] H.-J. Happel. Social search and need-driven knowledge sharing in wikis
with woogle. In Proceedings of the 5th International Symposium on
Wikis and Open Collaboration, WikiSym ’09, pages 13:1–13:10, New
York, NY, USA, 2009. ACM.

[5] B. Libert. Social Nation: How to Harness the Power of Social Media
to Attract Customers, Motivate Employees, and Grow Your Business.
Wiley, 2010.

[6] W. Maalej and H.-J. Happel. A lightweight approach for knowledge
sharing in distributed software teams. In 7th International Conference on
Practical Aspects of Knowledge Management, volume 5345 of Lecture
Notes in Computer Science, pages 14–25. Springer Verlag, 2008.

[7] W. Maalej, H.-J. Happel, and A. Rashid. When users become collab-
orators: towards continuous and context-aware user input. In OOPSLA
’09: Proceeding of the 24th ACM SIGPLAN conference companion on
Object oriented programming systems languages and applications, pages
981–990, New York, NY, USA, 2009. ACM.

[8] D. Pagano. Towards Systematic Analysis of Continuous User Input.
In Proceedings of the 4th International Workshop on Social Software
Engineering. ACM, 2011.

[9] D. Pagano and W. Maalej. How Do Developers Blog? An Exploratory
Study. In Proceedings of the 8th Conference on Mining Software
Repositories. ACM, 2011.

[10] J. Pal and A. Saha. Identifying Themes in Social Media and Detecting
Sentiments. In 2010 International Conference on Advances in Social
Networks Analysis and Mining, pages 452–457. IEEE, Aug. 2010.

[11] K. Schneider, S. Meyer, M. Peters, F. Schliephacke, J. Mörschbach,
and L. Aguirre. Feedback in Context : Supporting the Evolution of
IT-Ecosystems. Springer Berlin / Heidelberg, 2010.

[12] N. Seyff, F. Graf, and N. Maiden. Using Mobile RE Tools to Give
End-Users Their Own Voice. In Requirements Engineering, IEEE
International Conference on, pages 37–46, 2010.

[13] X. Song, Y. Chi, K. Hino, and B. Tseng. Identifying opinion leaders
in the blogosphere. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 971–974,
New York, New York, USA, 2007. ACM.

[14] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schroter, and
C. Weiss. What Makes a Good Bug Report? IEEE Transactions on
Software Engineering, 36(5):618–643, Sept. 2010.

872872871


