
On the Extent and Nature of Software Reuse
in Open Source Java Projects

Lars Heinemann, Florian Deissenboeck, Mario Gleirscher,
Benjamin Hummel, and Maximilian Irlbeck

Institut für Informatik, Technische Universität München, Germany
{heineman,deissenb,gleirsch,hummelb,irlbeck}@in.tum.de

Abstract. Code repositories on the Internet provide a tremendous amount
of freely available open source code that can be reused for building new
software. It has been argued that only software reuse can bring the gain of
productivity in software construction demanded by the market. However,
knowledge about the extent of reuse in software projects is only sparse.
To remedy this, we report on an empirical study about software reuse
in 20 open source Java projects with a total of 3.3 MLOC. The study
investigates (1) whether open source projects reuse third party code and
(2) how much white-box and black-box reuse occurs. To answer these
questions, we utilize static dependency analysis for quantifying black-
box reuse and code clone detection for detecting white-box reuse from
a corpus with 6.1 MLOC of reusable Java libraries. Our results indicate
that software reuse is common among open source Java projects and that
black-box reuse is the predominant form of reuse.

1 Introduction

Software reuse involves the use of existing software artifacts for the construc-
tion of new software [9]. Reuse has multiple positive effects on the competitive-
ness of a development organization. By reusing mature software components,
the overall quality of the resulting software product is increased. Moreover, the
development costs as well as the time to market are reduced [7, 11]. Finally,
maintenance costs are reduced, since maintenance tasks concerning the reused
parts are “outsourced” to other organizations. It has even been stated that there
are few alternatives to software reuse that are capable of providing the gain of
productivity and quality in software projects demanded by the industry [15].

Today, practitioners and researchers alike fret about the failure of reuse in
form of a software components subindustry as imagined by McIlroy over 40 years
ago [13]. Newer approaches, such as software product lines [2] or the development
of product specific modeling languages and code generation [8], typically focus
on reuse within a single product family and a single development organization.
However, reuse of existing third party code is—from our observation—a common
practice in almost all software projects of significant size. Software repositories
on the Internet provide a tremendous amount of freely reusable source code,
frameworks and libraries for many recurring problems. Popular examples are



II

the frameworks for web applications provided by the Apache Foundation and
the Eclipse platform for the development of rich client applications. Due to its
ubiquitous availability in software development, the Internet itself has become
an interesting reuse repository for software projects [3, 6]. Search engines like
Google Code Search1 provide powerful search capabilities and direct access to
millions of source code files written in a multitude of programming languages.
Open source software repositories like Sourceforge2, which currently hosts almost
a quarter million projects, offer the possibility for open source software projects
to conveniently share their code with a world-wide audience.

Research problem Despite the widely recognized importance of software reuse
and its proven positive effects on quality, productivity and time to market, it
remains largely unknown to what extent current software projects make use of
the extensive reuse opportunities provided by code repositories on the Internet.
Literature is scarce on how much software reuse occurs in software projects. It
is also unclear how much code is reused in black-box or white-box fashion. We
consider this lack of empirical knowledge about the extent and nature of software
reuse in practice problematic and argue that a solid basis of data is required in
order to assess the success of software reuse.

Contribution This paper extends the empirical knowledge about the extent and
nature of code reuse in open source projects. Concretely, we present quantitative
data on reuse in 20 open source projects that was acquired with different types
of static analysis techniques. The data describes the reuse rate of each project
and the relation between white-box and black-box reuse. The provided data
helps to substantiate the academical discussion about the success or failure of
software reuse and supports practitioners by providing them with a benchmark
for software reuse in 20 successful open source projects.

2 Terms

This section briefly introduces the fundamental terms this study is based on.

Software reuse In this paper, we use a rather simple notion of software reuse:
software reuse is considered as the utilization of code developed by third parties
besides the functionality provided by the operating system and the programming
platform.

We distinguish between two reuse strategies, namely black-box and white-box
reuse. Our definitions of these strategies follow the notions from [17].

White-box reuse We consider the reuse of code to be of the white-box type, if
it is incorporated in the project files in source form, i. e., the internals of the
reused code are exposed to the developers of the software. This implies that the
1 http://www.google.com/codesearch
2 http://sourceforge.net



III

code may potentially be modified. The reuse rate for white-box reuse is defined
as the ratio between the amount of reused lines of code and the total amount of
lines of code (incl. reused source code).

Black-box reuse We consider the reuse of code to be of the black-box type, if it is
incorporated in the project in binary form, i. e., the internals of the reused code
are hidden from the developers and maintainers of the software. This implies
that the code is reused as is, i. e., without modifications. For black-box reuse
the reuse rate is given by the ratio between the size of the reused binary code
and the size of the binary code of the whole software system (incl. reused binary
code).

3 Methodology

This section describes the empirical study that was performed to analyze the
extent and nature of software reuse in open source projects.

3.1 Study Design

We use the Goal-Question-Metric template from [20] for defining this study:

We analyze open source projects for the purpose of understanding the
state of the practice in software reuse with respect to its extent and na-
ture from the viewpoint of the developers and maintainers in the context
of Java open source software.

To achieve this, we investigate the following three research questions.

RQ 1 Do open source projects reuse software? The first question of the study asks
whether open source projects reuse software at all, according to our definition.

RQ 2 How much white-box reuse occurs? For those projects that do reuse existing
software, we ask how much of the code is reused in a white-box fashion as defined
in Section 2. We use as metrics the number of copied lines of code from external
sources as well as the reuse rate for white-box reuse.

RQ 3 How much black-box reuse occurs? We further ask how much of the code
is reused in a black-box fashion according to our definition. For this question we
use as metrics the aggregated byte code size of the reused classes from external
libraries and the reuse rate for black-box reuse. Although not covered by our
definition of software reuse, we separately measure the numbers for black-box
reuse of the Java API, since one could argue that this is also a form of software
reuse.

3.2 Study Objects

This section describes how we selected the projects that were analyzed in the
study and how they were preprocessed in advance to the reuse analyses.



IV

Table 1. The 20 studied Java applications

System Version Description LOC Size (KB)

Azureus/Vuze 4504 P2P File Sharing Client 786,865 22,761
Buddi 3.4.0.3 Budgeting Program 27,690 1,149
DavMail 3.8.5-1480 Mail Gateway 29,545 932
DrJava stable-20100913-r5387 Java Programming Env. 160,256 6,199
FreeMind 0.9.0 RC 9 Mind Mapper 71,133 2,352
HSQLDB 1.8.1.3 Relational Database Engine 144,394 2,032
iReport-Designer 3.7.5 Visual Reporting Tool 338,819 10,783
JabRef 2.6 BibTeX Reference Manager 109,373 3,598
JEdit 4.3.2 Text Editor 176,672 4,010
MediathekView 2.2.0 Media Center Management 23,789 933
Mobile Atlas Creator 1.8 beta 2 Atlas Creation Tool 36,701 1,259
OpenProj 1.4 Project Management 151,910 3,885
PDF Split and Merge 0.0.6 PDF Manipulation Tool 411 17
RODIN 2.0 RC 1 Service Development 273,080 8,834
soapUI 3.6 Web Service Testing Tool 238,375 9,712
SQuirreL SQL Client Snapshot-20100918 1811 Graphical SQL Client 328,156 10,918
subsonic 4.1 Web-based Music Streamer 30,641 1,050
Sweet Home 3D 2.6 Interior Design Application 77,336 3,498
TV-Browser 3.0 RC 1 TV Guide 187,216 6,064
YouTube Downloader 1.9 Video Download Utility 2,969 99

Overall 3,195,331 100,085

Selection Process We chose 20 projects from the open source software repos-
itory Sourceforge as study objects. Sourceforge is the largest repository of open
source applications on the Internet. It currently hosts 240,000 software projects
and has 2.6 million users3.

We used the following procedure for selecting the study objects4. We searched
for Java projects with the development status Production/Stable. We then sorted
the resulting list descending by number of weekly downloads. We stepped through
the list beginning from the top and selected each project that was a standalone
application, purely implemented in Java, based on the Java SE Platform and
had a source download. All of the 20 study objects selected by this procedure
were among the 50 most downloaded projects. Thereby, we obtained a set of
successful projects in terms of user acceptance. The application domains of the
projects were diverse and included accounting, file sharing, e-mail, software de-
velopment and visualization. The size of the downloaded packages (zipped files)
had a broad variety, ranging from 40 KB to 53 MB.

Table 1 shows overview information about the study objects. The LOC col-
umn denotes the total number of lines in Java source files in the downloaded
and preprocessed source package as described below. The Size column shows
the bytecode sizes of the study objects.

Preprocessing We deleted test code from the projects following a set of simple
heuristics (e.g. folders named test/tests). In few cases, we had to remove code
that was not compilable. For one project we omitted code that referenced a
commercial library.
3 http://sourceforge.net/about
4 the project selection was performed on October 5th, 2010



V

Table 2. The 22 libraries used as potential sources for white-box reuse

Library Description Version LOC

ANTLR Parser Generator 3.2 66,864
Apache Ant Build Support 1.8.1 251,315
Apache Commons Utility Methods 5/Oct/2010 1,221,669
log4j Logging 1.2.16 68,612
ASM Byte-Code Analysis 3.3 3,710
Batik SVG Rendering and Manipulation 1.7 366,507
BCEL Byte-Code Analysis 5.2 48,166
Eclipse Rich Platform Framework 3.5 1,404,122
HSQLDB Database 1.8.1.3 157,935
Jaxen XML Parsing 1.1.3 48,451
JCommon Utility Methods 1.0.16 67,807
JDOM XML Parsing 1.1.1 32,575
Berkeley DB Java Edition Database 4.0.103 367,715
JFreeChart Chart Rendering 1.0.13 313,268
JGraphT Graph Algorithms and Layout 0.8.1 41,887
JUNG Graph Algorithms and Layout 2.0.1 67,024
Jython Scripting Language 2.5.1 252,062
Lucene Text Indexing 3.0.2 274,270
Spring Framework J2EE Framework 3.0.3 619,334
SVNKit Subversion Access 1.3.4 178,953
Velocity Engine Template Engine 1.6.4 70,804
Xerces-J XML Parsing 2.9.0 226,389

Overall 6,149,439

We also added missing libraries that we downloaded separately in order to
make the source code compilable. We either obtained the libraries from the
binary package of the project or from the library’s website. In the latter case we
chose the latest version of the library.

3.3 Study Implementation and Execution

This section details how the study was implemented and executed on the study
objects. All automated analyses were implemented in Java on top of our open
source quality analysis framework ConQAT5, which provides—among others—
clone detection algorithms and basis functionality for static code analysis.

Detecting White-Box Reuse As white-box reuse involves copying external
source code into the project’s code, the sources of reuse are not limited to li-
braries available at compile time, but can virtually span all existing Java source
code. The best approximation of all existing Java source code is probably pro-
vided by the indices of the large code search engines, such as Google Code Search
or Koders. Unfortunately, access to these engines is typically limited and does
not allow to search for large amounts of code, such as the 3 MLOC of our study
objects. Consequently, we only considered a selection of commonly used Java li-
braries and frameworks as potential sources for white-box reuse. We selected 22
libraries which are commonly reused based on our experience with both own de-
velopment projects and systems we analyzed during earlier studies. The libraries
5 http://www.conqat.org



VI

are listed in Table 2 and comprise more than 6 MLOC. For the sake of presen-
tation, we treated the Apache Commons as a single library, although it consists
of 39 individual libraries that are developed and versioned independently. The
same holds for Eclipse, where we chose a selection of its plug-ins.

To find potentially copied code, we used our clone detection algorithm pre-
sented in [5] to find duplications between the selected libraries and the study
objects. We computed all clones consisting of at least 15 statements with nor-
malization of formatting and identifiers (type-2 clones), which allowed us to also
find partially copied files (or files which are not fully identical due to further
independent evolution), while keeping the rate of false positives low. All clones
reported by our tool were also inspected manually, to remove any remaining false
positives.

We complemented the clone detection approach by manual inspection of the
source code of all study objects. The size of the study objects only allows a very
shallow inspection, based on the names of files and directories (which correspond
to Java packages). For this we scanned the directory trees of the projects for files
residing in separate source folders or in packages that were significantly different
from the package names used for the project itself. The files found this way were
then inspected and their source identified based on header comments or a web
search. Of course this step only can find large scale reuse, where multiple files
are copied into a project and the original package names are preserved (which
are typically different from the project’s package names). However, during this
inspection we are not limited to the 22 selected libraries, but potentially can find
other reused code as well.

Detecting Black-Box Reuse The primary way of black-box reuse in Java
programs is the inclusion of libraries. Technically, these are Java Archive Files
(JAR), which are zipped files containing the byte code of the Java types. Ideally,
one would measure the reuse rate based on the source code of the libraries.
However, obtaining the source code for such libraries is error-prone as many
projects do not document the exact version of the used libraries. In certain
cases, the source code of libraries is not available at all. To avoid these problems
and prevent measurement inaccuracies, we performed the analysis of black-box
reuse directly on the Java byte code stored in the JAR files.

While JAR files are the standard way of packaging reusable functionality in
Java, the JAR files themselves are not directly reused. They merely represent a
container for Java types (classes, interfaces, enumerations and annotations) that
are referenced by other types. Hence, the type is the main entity of reuse in Java6.
Our black-box reuse analysis determines which types from libraries are referenced
from the types of the project code. The dependencies are defined by the Java
Constant Pool [12], a part of the Java class file that holds information about
all referenced types. References are method calls and all type usages, induced
e. g., by local variables or inheritance. Our analysis transitively traverses the
6 In addition to JAR files, Java provides a package concept that resembles a logical

modularization concept. Packages, however, cannot directly be reused.



VII

dependency graph, i. e., also those types that are indirectly referenced by reused
types are included in the resulting set of reused types. The analysis approach
ensures that in contrast to counting the whole library as reused code, only the
subset that is actually referenced by the project is considered. The rationale for
this is that a project can incorporate a large library but use only a small fraction
of it. To quantify black-box reuse, the analysis measures the size of the reused
types by computing their aggregated byte code size. The black-box analysis is
based on the BCEL library7 that provides byte code processing functionality.

Our analysis can lead to an overestimation of reuse as we always include
whole types although only specific methods of a type may actually be reused.
Moreover, a method may reference certain types but the method itself could be
unreachable. On the other hand, our approach can lead to an underestimation
of reuse as the implementations of interfaces are not considered as reused unless
they are discovered on another path of the dependency search. Details regarding
this potential error can be found in the section that discusses the threats to
validity (Section 6).

Although reuse of the Java API is not covered by our definition of software
reuse, we also measured reuse of the Java API, since potential variations in
the reuse rates of the Java API are worthwhile to investigate. Since every Java
class inherits from java.lang.Object and thereby (transitively) references a
significant part of the Java API classes, even a trivial Java program exhibits—
according to our analysis—a certain amount of black-box reuse. To determine
this baseline, we performed the analysis for an artificial minimal Java program
that only consists of an empty main method. This baseline of black-box reuse
of the Java API consisted of 2,082 types and accounted for about 5 MB of byte
code. We investigated the reason for this rather large baseline and found that
Object has a reference to Class which in turn references ClassLoader and
SecurityManager. These classes belong to the core functionality for running
Java applications. Other referenced parts include the Reflection API and the
Collection API. Due to the special role of the Java API, we captured the numbers
for black-box reuse of the Java API separately. All black-box reuse analyses were
performed with a Sun Java Runtime Environment for Linux 64 Bit in version
1.6.0.20.

4 Results

This section contains the results of the study in the order of the research ques-
tions.

4.1 RQ 1: Do open source projects reuse software?

The reuse analyses revealed that 18 of the 20 projects do reuse software from
third parties, i. e., of the analyzed projects 90% reuse code. HSQLDB and

7 http://jakarta.apache.org/bcel



VIII

YouTube Downloader were the only projects for which no reuse—neither black-
box nor white-box—was found.

4.2 RQ 2: How much white-box reuse occurs?

We attempt to answer this question by a combination of automatic techniques
(clone detection) and manual inspections. The clone detection between the code
of the study objects and the libraries from Table 2 reported 337 clone classes
(i. e., groups of clones) with 791 clone instances all together. These numbers only
include clones between a study object and one or more libraries; clones within
the study objects or the libraries were not considered. As we had HSQLDB both
in our set of study objects and the libraries used, we discarded all clones between
these two.

Manual inspection of these clones led to the observation that, typically, all
clones are in just a few of the file pairs which are nearly completely covered by
clones. So, the unit of reuse (as far as we found it) is the file/class level; single
methods (or sets of methods) were not copied. Most of the copied files where not
completely identical. These changes are caused either by minor modifications to
the files after copying them to the study objects, or (more likely) due to different
versions of the libraries used. As the differences between the files were minor, we
counted the entire file as copied if the major part of it was covered by clones.

By manual inspection of the study objects we found entire libraries copied
in four of the study objects. These libraries were either less well-known (GNU
ritopt), no longer available as individual project (microstar XML parser), or
not released as an individual project but rather extracted from another project
(OSM JMapViewer). All of these could not be found by the clone detection
algorithm, as the corresponding libraries were not part of our original set.

The results for the duplicated code found by clone detection and the code
found during manual inspection are summarized in Table 3. The last column
gives the overall amount of white-box reused code relative to the project’s size
in LOC. For 11 of the 20 study objects no white-box reuse whatsoever could
be proven. For another 5 of them, reuse is below 1%. However, there are also
4 projects with white-box reuse in the range of 7% to 10%. The overall LOC
numbers shown in the last row indicate that the amount of code that results
from copying entire libraries outnumbers by far the code reused by more selective
copy&paste.

4.3 RQ 3: How much black-box reuse occurs?

Figure 1 illustrates the absolute bytecode size distributions between the project
code (own), the reused parts of the libraries (3rd party) and the Java API ordered
descending by the total amount of bytecode. The horizontal line indicates the
baseline usage of the Java API. The reuse of third party libraries ranged between
0 MB and 42.2 MB. The amount of reuse of the Java API was similar among
the analyzed projects and ranged between 12.9 MB and 16.6 MB. The median
was 2.4 MB for third party libraries and 13.3 MB for the Java API. The project



IX

Table 3. Amount of white-box reuse found by clone detection and manual inspection

System Clone Detection (LOC) Manual Inspection (LOC) Overall Percent

Azureus/Vuze 1040 57,086 7.39%
Buddi —
DavMail —
DrJava —
FreeMind —
HSQLDB —
iReport-Designer 298 0.09%
JabRef 7,725 7.06%
JEdit 7,261 9,333 9.39%
MediathekView —
Mobile Atlas Creator 2,577 7.02%
OpenProj 87 0.06%
PDF Split and Merge —
RODIN 382 0.14%
soapUI 2,120 0.89%
SQuirreL SQL Client —
subsonic —
Sweet Home 3D —
TV-Browser 513 0.27%
YouTube Downloader —

Overall 11,701 76,721 n.a.

iReport-Designer reused the most functionality in a black-box fashion both from
libraries and from the Java API. The project with the smallest extent of black-
box reuse was YouTube Downloader.

Figure 2 is based on the same data but shows the relative distributions of
the bytecode size. The projects are ordered descending by the total amount of
relative reuse. The relative reuse from third party libraries was 0% to 61.7%
with a median of 11.8%. The relative amount of reused code from the Java API
ranged between 23.0% and 99.3% with a median of 73.0%. Overall (third party
and Java API combined), the relative amount of reused code ranged between
41.3% and 99.9% with a median of 85.4%. The project iReport-Designer had
the highest black-box reuse rate. YouTube Downloader used the most code from

 0

 10

 20

 30

 40

 50

 60

 70

iR
ep

or
t-D

es
ig

ne
r

so
ap

U
I

R
O

D
IN

S
Q

ui
rr

eL
 S

Q
L 

C
lie

nt

A
zu

re
us

/V
uz

e

O
pe

nP
ro

j

TV
-B

ro
w

se
r

D
rJ

av
a

S
w

ee
t H

om
e 

3D

Ja
bR

ef

M
ob

ile
 A

tla
s 

C
re

at
or

Je
di

t

B
ud

di

D
av

M
ai

l

Fr
ee

M
in

d

H
S

Q
LD

B

P
D

F 
S

pl
it 

an
d 

M
er

ge

M
ed

ia
th

ek
 V

ie
w

su
bs

on
ic

Y
ou

Tu
be

 D
ow

nl
oa

de
r

Java API
Java API Baseline

3rd party
own

Fig. 1. Absolute bytecode size distribution (MB)



X

 0

 20

 40

 60

 80

 100

P
D

F
 S

pl
it 

an
d 

M
er

ge

Y
ou

T
ub

e 
D

ow
nl

oa
de

r

D
av

M
ai

l

M
ed

ia
th

ek
 V

ie
w

B
ud

di

M
ob

ile
 A

tla
s 

C
re

at
or

su
bs

on
ic

H
S

Q
LD

B

F
re

eM
in

d

O
pe

nP
ro

j

S
w

ee
t H

om
e 

3D

iR
ep

or
t-

D
es

ig
ne

r

Ja
bR

ef

so
ap

U
I

R
O

D
IN

Je
di

t

T
V

-B
ro

w
se

r

D
rJ

av
a

S
Q

ui
rr

eL
 S

Q
L 

C
lie

nt

A
zu

re
us

/V
uz

e 

Java API 3rd Party own

Fig. 2. Relative bytecode size distribution (%)

 0

 20

 40

 60

 80

 100

P
D

F
 S

pl
it 

an
d 

M
er

ge

iR
ep

or
t-

D
es

ig
ne

r

D
av

M
ai

l

B
ud

di

so
ap

U
I

O
pe

nP
ro

j

R
O

D
IN

M
ob

ile
 A

tla
s 

C
re

at
or

S
Q

ui
rr

eL
 S

Q
L 

C
lie

nt

D
rJ

av
a

S
w

ee
t H

om
e 

3D

T
V

-B
ro

w
se

r

Ja
bR

ef

F
re

eM
in

d

M
ed

ia
th

ek
 V

ie
w

JE
di

t

su
bs

on
ic

A
zu

re
us

/V
uz

e

H
S

Q
LD

B

Y
ou

T
ub

e 
D

ow
nl

oa
de

r

3rd Party own

Fig. 3. Relative bytecode size distribution (%) without Java API

the Java API relative to its own code size. For 19 of the 20 projects, the amount
of reused code was larger than the amount of own code. Of the overall amount
of reused code in the sample projects, 34% stemmed from third party libraries
and 66% from the Java API.

Figure 3 illustrates the relative byte code size distributions between the own
code and third party libraries, i. e., without considering the Java API as a reused
library. The projects are ordered descending by reuse rate. The relative amount
of reused library code ranged from 0% to 98.9% with a median of 45.1%. For
9 of the 20 projects the amount of reused code from third party libraries was
larger than the amount of own code.



XI

5 Discussion

The data presented in the previous sections lead to interesting insights into
the current state of open source Java development, but also open new questions
which were not part of our study setup. We discuss both in the following sections.

5.1 Extent of reuse

Our study reveals that software reuse is common among open source Java
projects, with black-box reuse as the predominant form. None of the 20 projects
analyzed has less than 40% black-box reuse when including the Java API. Even
when not considering the Java API the median reuse rate is still above 40% and
only 4 projects are below the 10% threshold. Contrary, white-box reuse is only
found in about half of the projects at all and never exceeds 10% of the code.

This difference can probably be explained by the increased maintenance ef-
forts that are commonly associated with white-box reuse as described by Jacob-
son et al. [7] and Mili et al. [14]. The detailed results of RQ 2 also revealed that
larger parts consisting of multiple files were mostly copied if either the origi-
nating library was no longer maintained or the files were never released as an
individual library. In both cases the project’s developers would have to maintain
the reused code in any case, which removes the major criticism of white-box
reuse.

It also seems that the amount of reused third party libraries seldom exceeds
the amount of code reused from the Java API. The only projects for which this
is not the case are iReport-Designer, RODIN and soapUI, from which the first
two are built upon NetBeans respectively Eclipse, which provide rich platforms
on top of the Java API.

Based on our data, it is obvious that the early visions of reusable components
that only have to be connected by small amounts of glue code and would lead
to reuse rates beyond 90% are not realistic today. On the other hand, the reuse
rates we found are high enough to have a significant impact on the development
effort. We would expect that reuse of software, as it is also fostered by the open
source movement, has a huge contribution to the rich set of applications available
today.

5.2 Influence of project size on reuse rate

The amount of reuse ranges significantly between the different projects. While
PDF Split and Merge is just a very thin wrapper around existing libraries, there
are also large projects which have (relatively) small reuse rates (e. g., less than
10% for Azureus without counting the Java API).

Motivated by a study by Lee and Litecky [10], we investigated a possible
correlation between code size and reuse rate in our data set. Their study was
based on a survey in the domain of commercial Ada development on 73 samples
and found a negative influence of software size on the rate of reuse. For the
reuse rate without the Java API (only third party code) we found a Spearman



XII

correlation coefficient of 0.05 with the size of the project’s own code (two-tailed
p-value: 0.83). Thus, we can infer no dependence between these values. If we use
the overall reuse rate (including the Java API), the Spearman coefficient is -0.93
(p-value < 0.0001), which indicates a significant and strong negative correlation.
This confirms the results of [10] that project size typically reduces the reuse rate.

5.3 Types of reused functionality

It is interesting to investigate what kind of functionality is actually reused
by software. Therefore, we tried to categorize all reused libraries into differ-
ent groups of common functionality. Consequently, we analyzed the purpose of
each reused library and divided them into seven categories (e. g., Networking,
Text/XML, Rich Cient Platforms or Graphics/UI). To determine to which ex-
tent a certain type of functionality is reused we employed our black-box reuse
detection algorithm presented in Section 3.3 to calculate the amount of bytecode
for each library that is reused inside a project.

We observed that there is no predominant type of reused functionality and
that nearly all projects are reusing functionality belonging to more than one
category. We believe that there is no significant insight we can report except
that reuse seems to be diverse among the categories and is not concentrated on
a single purpose.

6 Threats to validity

This section discusses potential threats to the internal and external validity of
the results presented in this paper.

6.1 Internal validity

The amount of reuse measured fundamentally depends on the definition of soft-
ware reuse and the techniques used to measure it. We discuss possible flaws
that can lead to an overestimation of the actual reuse, an underestimation, or
otherwise threaten our results.

Overestimation of reuse The measurement of white-box reuse used the results
of a clone detection, which could contain false positives. Thus, not all reported
clones indicate actual reuse. To mitigate this, we manually inspected the clones
found. Additionally, for both the automatically and manually found duplicates,
it is not known whether the code was copied into the study objects or rather
from them. However, all findings were manually verified, for example by checking
the header comments, we ensured that the code was actually copied from the
library into the study object.

Our estimation of black-box reuse is based on static references in the byte-
code. We consider a class as completely reused if it is referenced, which may



XIII

not be the case. For example, the method holding the reference to another class
might never be called. Another possibility would be to use dynamic analysis and
execution traces to determine the amount of reused functionality. However, this
approach has the disadvantage that only a finite subset of all execution traces
could be considered, leading to a potentially large underestimation of reuse.

Underestimation of reuse The application of clone detection was limited to
a fixed set of libraries. Thus, copied code could be missed as the source it was
taken from was not included in our comparison set. Additionally, the detector
might miss actual clones (low recall) due to weak normalization settings. To
adress this, we chose settings that yield higher recall (at the cost of precision).
The manual inspection of the study objects’ code for further white-box reuse is
inherently incomplete; due to the large amounts of code only the most obvious
copied parts could be found.

The static analysis used to determine black-box reuse misses certain de-
pendencies, such as method calls performed via Java’s reflection mechanism or
classes that are loaded based on configuration information. Additionally, our
analysis can not penetrate the boundaries created by Java interfaces. The ac-
tual implementations used at run-time (and their dependencies) might not be
included in our reuse estimate. To mitigate this, one could search for an imple-
menting class and include the first match into the further dependency search
and the result set. However, preliminary experiments showed that this approach
leads to a large overestimation. For example a command line program that ref-
erences an interface that is also implemented by a UI class could lead us to the
false conclusion that the program reuses UI code.

There are many other forms of software reuse that are not covered by our
approach. One example are reusable generators. If a project uses a code generator
to generate source code from models, this would not be detected as a form of
reuse by our approach. Moreover, there are many other ways in which software
components can interact with each other besides use dependencies in the source
code. Examples are inter-process communication, web services that utilize other
services via SOAP calls, or the integration of a database via an SQL interface.

6.2 External validity

While we tried to use a comprehensible way of sampling the study objects, it is
not clear to what extent they are representative for the class of open source Java
programs. First, the choice of Sourceforge as source for the study objects could
bias our selection, as a certain kind of open source developers could prefer other
project repositories (such as Google Code). Second, we selected the projects from
the 50 most downloaded ones, which could bias our results.

As the scope of the study are open source Java programs, transferability of the
results to other programming languages or commercially developed software is
unclear. Especially the programming language is expected to have a huge impact
on reuse, as the availability of both open source and commercial reusable code
heavily depends on the language used.



XIV

7 Related Work

Software reuse is a research field with an extensive body of literature. An overview
of different reuse approaches can be found in the survey from Krueger [9]. In the
following, we focus on empirical work that aims at quantifying the extent of
software reuse in real software projects.

In [18], Sojer et al. investigate the usage of existing open source code for the
development of new open source software by conducting a survey among 686
open source developers. They analyze the degree of code reuse with respect to
developer and project characteristics. They report that software reuse plays an
important role in open source development. Their study reveals that a mean of
30% of the implemented functionality in the projects of the survey participants
is based on reused code. Since Sojer et al. use a survey to analyze the extent of
code reuse, the results may be subject to inaccurate estimates of the respondents.
Our approach analyzes the source code of the projects and therefore avoids this
potential inaccuracy. Our results are confirmed by their study, since they also
report that software reuse is common in open source projects.

Haefliger et al. [4] analyzed code reuse within six open source projects by
performing interviews with developers as well as inspecting source code, code
modification comments, mailing lists and project web pages. Their study revealed
that all sample projects reuse software. Moreover, the authors found that by far
the dominant form of reuse within their sample was black-box reuse. In the
sample of 6 MLOC, 55 components which in total account for 16.9 MLOC were
reused. Of the 6 MLOC, only about 38 kLOC were reused in a white-box fashion.
The developers also confirmed that this form of reuse occurs only infrequently
and in small quantities. Their study is related to ours, however the granularity
for the black-box analysis was different. While they treated whole components
as reusable entities, we measured the fraction of the library that is actually used.
Since they use code repository commit comments for identifying white-box reuse,
their results are sensitive with regards to the accuracy of these comments. In
contrast, our method utilizes clone detection and is therefore not dependent on
correct commit comments. Their study confirms our finding that black-box is
the by far predominant form of reuse.

In [16], Mockus investigates large-scale code reuse in open source projects by
identifying components that are reused among several projects. The approach
looks for directories in the projects that share a certain fraction of files with
equal names. He investigates how much of the files are reused among the sample
projects and identify what type of components are reused the most. In the stud-
ied projects, about 50% of the files were used in more than one project. Libraries
reused in a black-box fashion are not considered by his approach. While Mockus’
work quantifies how often code entities are reused, our work quantifies the frac-
tion of reused code compared to the own code within projects. Moreover, reused
entities that are smaller than a group of files are not considered. However, their
results are in line with our findings regarding the observation that code reuse is
commonly practiced in open source projects.



XV

In [10], Lee et al. report on an empirical study that investigates how organi-
zations employ reuse technologies and how different criteria influence the reuse
rate in organizations using Ada technologies. They surveyed 500 Ada profession-
als from the ACM Special Interest Group on Ada with a one-page questionnaire.
The authors determine the amount of reuse with a survey. Therefore their results
may be inaccurate due to subjective judgement of the respondents. Again, our
approach mitigates this risk by analyzing the source code of the project.

In [19], von Krogh et al. report on an exploratory study that analyzes knowl-
edge reuse in open source software. The authors surveyed the developers of 15
open source projects to find out whether knowledge is reused among the projects
and to identify conceptual categories of reuse. They analyze commit comments
from the code repository to identify accredited lines of code as a direct form of
knowledge reuse. Their study reveals that all the considered projects do reuse
software components. Our observation that software reuse is common in open
source development is therefore confirmed by their study. Like Haefliger et al.,
Krogh et al. rely on commit comments of the code repository with the already
mentioned potential drawbacks.

Basili et al. [1] investigated the influence of reuse on productivity and quality
in object-oriented systems. Within their study, they determine the reuse rate for
8 projects developed by students with a size ranging from about 5 kSLOCs to
14 kSLOCs. While they report reuse rates in a similar range as those from our
results, they analyzed rather small programs written by students in the context
of the study. In contrast to that, we analyzed open source projects.

8 Conclusions and Future Work

Software reuse, often called the holy grail of software engineering, has certainly
not been found in the form of reusable components that simply need to be
plugged together. However, our study not only shows that reuse is common
in almost all open source Java projects but also that significant amounts of
software are reused: Of the analyzed 20 projects 9 projects have reuse rates of
more than 50%—even if reuse of the Java API is not considered. Reassuringly,
these reuse rates are to a great extent realized through black-box reuse and not
by copy&pasting source code.

We conclude that in the world of open-source Java development, high reuse
rates are not a theoretical option but are achieved in practice. Especially, the
availability of reusable functionality, which is a necessary prerequisite for reuse
to occur, is well-established for the Java platform.

As a next step, we plan to extend our studies to other programming eco-
systems and other development models. In particular, we are interested in the
extent and nature of reuse for projects implemented in legacy languages like
COBOL and PL/1 on the one hand and currently hyped languages like Python
and Scala on the other hand. Moreover, our future studies will include commer-
cial software systems to investigate to what extent the open-source development
model promotes reuse.



XVI

Acknowledgment

The authors want to thank Elmar Juergens for inspiring discussions and helpful
comments on the paper.

References

1. V. Basili, L. Briand, and W. Melo. How reuse influences productivity in object-
oriented systems. Communications of the ACM, 39(10):116, 1996.

2. P. Clements and L. M. Northrop. Software Product Lines : Practices and Patterns.
Addison Wesley, 6th edition, 2007.

3. W. Frakes and K. Kang. Software reuse research: Status and future. IEEE Trans-
actions on Software Engineering, 31(7):529–536, 2005.

4. S. Haefliger, G. Von Krogh, and S. Spaeth. Code Reuse in Open Source Software.
Management Science, 54(1):180–193, 2008.

5. B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-Based Code Clone
Detection: Incremental, Distributed, Scalable. In ICSM’10, 2010.

6. O. Hummel and C. Atkinson. Using the web as a reuse repository. In Reuse of
Off-the-Shelf Components, volume 4039 of LNCS, pages 298–311. Springer, 2006.

7. I. Jacobson, M. Griss, and P. Jonsson. Software reuse: architecture, process and
organization for business success. Addison-Wesley, 1997.

8. S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling. Wiley, 2008.
9. C. Krueger. Software reuse. ACM Comput. Surv., 24(2):131–183, 1992.

10. N. Lee and C. Litecky. An empirical study of software reuse with special attention
to Ada. IEEE Transactions on Software Engineering, 23(9):537–549, 1997.

11. W. Lim. Effects of reuse on quality, productivity, and economics. IEEE Software,
11(5):23–30, 2002.

12. T. Lindholm and F. Yellin. Java virtual machine specification. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1999.

13. M. McIlroy, J. Buxton, P. Naur, and B. Randell. Mass produced software compo-
nents. Software Engineering Concepts and Techniques, pages 88–98, 1969.

14. H. Mili, A. Mili, S. Yacoub, and E. Addy. Reuse-Based Software Engineering:
Techniques, Organizations, and Controls. Wiley-Interscience, 2001.

15. H. Mili, F. Mili, and A. Mili. Reusing software: Issues and research directions.
IEEE Transactions on Software Engineering, 21(6):528–562, 1995.

16. A. Mockus. Large-scale code reuse in open source software. In FLOSS’07, 2007.
17. T. Ravichandran and M. Rothenberger. Software reuse strategies and component

markets. Communications of the ACM, 46(8):109–114, 2003.
18. M. Sojer and J. Henkel. Code Reuse in Open Source Software Development: Quan-

titative Evidence, Drivers, and Impediments. JAIS, 2011. to appear.
19. G. von Krogh, S. Spaeth, and S. Haefliger. Knowledge Reuse in Open Source

Software: An Exploratory Study of 15 Open Source Projects. In HICSS’05, 2005.
20. C. Wohlin, P. Runeson, and M. Höst. Experimentation in software engineering:

An introduction. Kluwer Academic, 2000.


