
How Do Developers Blog? An Exploratory Study

Dennis Pagano
Technische Universität München

Munich, Germany
pagano@cs.tum.edu

Walid Maalej
Technische Universität München

Munich, Germany
maalejw@cs.tum.edu

ABSTRACT
We report on an exploratory study, which aims at under-
standing how software developers use social media compared
to conventional development infrastructures. We analyzed
the blogging and the committing behavior of 1,100 devel-
opers in four large open source communities. We observed
that these communities intensively use blogs with one new
entry about every 8 hours. A blog entry includes 14 times
more words than a commit message. When analyzing the
content of the blogs, we found that most popular topics rep-
resent high-level concepts such as functional requirements
and domain concepts. Source code related topics are cov-
ered in less than 15% of the posts. Our results also show
that developers are more likely to blog after corrective en-
gineering and management activities than after forward en-
gineering and re-engineering activities. Our findings call for
a hypothesis-driven research to further understand the role
of social media in software engineering and integrate it into
development processes and tools.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Process Metrics;
K.4.3 [Organizational Impacts]: Computer-supported col-
laborative work

General Terms
Human Factors, Documentation, Measurement

Keywords
Social Software, Open Source, Data Mining, Blogs

1. INTRODUCTION
Social media enable the creation and exchange of user-

generated content [9]. Individuals can use them to inter-
act with, share information with, and meet other individu-
als, presumably with similar interests, forming large data,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00.

knowledge, and user bases. In recent years the number of
users and use-cases of social media has grown rapidly [14].
For example, facebook recently announced that it has more
active users than the population of the USA1. The usage
of facebook, blogger & co. is no longer limited to private
scenarios such as finding school friends, sharing photos, or
keeping a vacation diary. Professionals use more and more
social media e.g. to organize a conference, market a new
product, or coordinate an open source project.

The software engineering community has also recognized
the potentials of social media to improve communication and
collaboration in software projects [2]. For example, several
studies have shown the role of Wikis for managing software
documentation and collaboration [12]. Other authors sug-
gested the integration of social media into development envi-
ronments [7, 15]. However, there exists no empirical frame-
work on the role of social media in software engineering.
This paper takes a step towards such a framework by ex-
ploring the role of blogs – a popular social medium in open
source communities.

We report on an exploratory study, which examines the
content and the metadata of blogs in four large open source
software projects. The contribution of the study is threefold.
First, it gives empirical evidence on what a developer’s blog
post typically looks like. Second, it explores usage patterns
of blogs during development and identifies dependencies to
other development activities. Third, it gives first insights to
tool vendors and practitioners into how to better integrate
social media into development tools and processes.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces our research setting, including the research
questions, the used data, and followed methodology. The fol-
lowing three sections summarize our research findings on the
usage of blogs (Section 3), the information included (Section
4), and the dependencies between blogging and committing
behavior of developers (Section 5). Section 6 surveys re-
lated work focusing on studies, which analyze social media
and similar artifacts. Section 7 discusses our findings while
Section 8 presents their limitations. Finally, Section 9 con-
cludes the paper and sketches our future plans.

2. RESEARCH SETTING
We first summarize the questions that drive our research.

Further we describe the overall method we used to collect
and analyze the data and finally the actual data sets we
collected to perform our analysis.

1http://www.facebook.com/press/info.php?statistics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’11, May 21–22, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0574-7/11/05 ...$10.00

123

2.1 Research Questions
We focus our analysis on three aspects: blog usage, blog

content, and integration of blogging into development work-
flows. Blog usage describes how software development com-
munities blog (i.e. share information in blogs). For that, we
analyze the publishing frequency as well as the structure of
blog posts. In particular we answer the following questions:

• Publishing frequency: How often do developers and
other stakeholders create blog entries?

• Post structure: What are typical elements included
or referenced in a blog post?

When analyzing the blog usage we distinguish between ac-
tive developers (committers) and other bloggers.

Blog content describes the information developers include
and publish in their blogs. This includes identifying topics
(i.e. semantic entities) and their frequencies. In particular
we answer the following questions:

• Topics: Which topics are used in blogs of software
development communities?

• Topic popularity: How popular are these topics (i.e.
frequency distribution across the different projects)?

Finally, integration describes how blogging activities are in-
tegrated in the development workflows. We examine usage
patterns and content dependencies between blogs and source
code repositories, answering the following questions:

• Publishing patterns: Are there particular patterns,
which describe when developers use blogs within their
development workflows?

• Content dependencies: Are there relationships be-
tween the work performed and the information blogged?

2.2 Research Method
Our research method is summarized in Figure 1. It con-

sists of two phases: a data preparation and a data analysis
phase. In the preparation phase, we first select the develop-
ment communities, from which we will collect the research
data. To qualify for our study a community must have
a public source code repository and at least 50 bloggers.
So-called blog aggregators like Planet2 collect blog posts of
community members in a single place. Each entry in the ag-
gregator includes meta information about the name of the
blogger and the link to the original blog post. Additionally,
the aggregator lists all contributing persons as the sources.
Contributors are usually selected by a particular community
board. The selection underlies a strict quality policy, since
the primary goal of the common blog is to provide project
related knowledge.

After querying the blog aggregator and the source code
repository, we associate the blog posts to the commit his-
tory based on the authors’ accounts. This mapping enables
to distinguish between bloggers who commit source code and
other bloggers in the community. We build a list of blog-
ger names and a list of committer names from the collected
posts and commit history. Then we try to assign a commit-
ter name to a blogger name. Most blog posts include the
real name of their authors. However, most commits only

2www.planetplanet.org

Regular Expressions &
Statistical Analysis

LDA Topic Modeling

Sequential Pattern
Mining

Data Analysis PhaseData Preparation Phase

Select Community

Query Source
Code

Repositories

Query Blog
Aggregator

Map Bloggers and
Committers

Blog
Posts

Commit
History

Usage

Content

Integration

Figure 1: Research Method

contain login names. The real names in the lists were not
identical (e.g. “David Wheeler” and “David E. Wheeler”).
To compare two real names, we use a text similarity algo-
rithm3, that finds exact matches as well as slightly diverging
pairs. In addition we create login name candidates from the
blogger’s real name (e.g. “glefur” from “Goulwen Le Fur”)
and rerun the text similarity algorithm on the login names.
Finally, we observed that several commit messages contain
meta information such as “Author: 10:44:52 Tim Janik”,
“Author: PST 2006 Michael Emmel”. We extract this infor-
mation using regular expressions and manually correct the
author names when required.

The data analysis phase consists of three steps, which re-
spectively answer the usage, content, and integration ques-
tions. To analyze the usage of blogs we apply descriptive
statistics (for frequency calculation) and regular expressions
(for analyzing the blog structure). To analyze the blog con-
tent and included information we apply the Latent Dirichlet
Allocation (LDA) topic modeling technique [4]. When ap-
plied on the blogs, this technique extracts keywords which
belong together and groups them as topics. Finally, to study
the integration aspect we order commit messages and blog
posts by time and investigate the resulting stream of events.
Thereby we look for patterns and regularities using Sequen-
tial Pattern Mining [1].

2.3 Research Data
We selected four large open source software communi-

ties for our analysis: Eclipse, GNOME, PostgreSQL, and
Python. Table 1 shows an overview of the collected data,
which we briefly introduce in the following.

Table 1: Overview of Collected Data
Eclipse GNOME PostgreSQL Python

posts 10,333 18,323 2,691 18,660

bloggers 328 342 95 405

commits 239,659 252,831 30,745 45,116

committers 467 2,294 34 178

blogging committers 93 250 12 34

Eclipse is an open development platform, which comprises
extensible frameworks, tools, and runtime environments to
build, deploy, and manage software systems. The Eclipse

3http://www.catalysoft.com/articles/StrikeAMatch.html

124

community is one of the largest open source communities
including 11 million users and more than thousand active
developers. From Planet Eclipse4 we collected 10,333 blog
posts of 328 community members over the last 7 years.
Eclipse comprises over hundred subprojects, which use sepa-
rate source code repositories. We asked 3 Eclipse developers
to name the most active projects in the community. Based
on their independent feedback, we selected the following 22
projects: atl, cdo, cdt, compare, dsdp, dtp, e4, ecf, eclipse
platform, emf, equinox, gef, gmf, jdt, m2m, m2t, mylyn,
pde, rap, riena, swt, and xtext. From the repositories of
these projects we collected 239,659 commit messages of 467
developers, written over the last 10 years.

GNOME is a large community, which develops a free and
open source desktop environment. The GNOME commu-
nity describes itself as “a worldwide community of volun-
teers who hack, translate, design, QA, and generally have
fun together.” From Planet GNOME5 we collected 18,323
blog posts from 342 community members from the last 10
years. GNOME includes about hundred subprojects, which
use different source code repositories. As in Eclipse we
asked for the most active subprojects and selected the fol-
lowing 34: banshee, empathy, eog, epiphany, evolution, f-
spot, gdk-pixbuf, gdm, gedit, gimp, glib, gnome-applets,
gnome-bluetooth, gnome-control-center, gnome-disk-utility,
gnome-keyring, gnome-packagekit, gnome-panel, gnome-po-
wer-manager, gnome-session, gnome-shell, gnome-terminal,
gnome-utils, gnome-vfs, gparted, gtk+, gvfs, libgnome, me-
tacity, nautilus, pitivi, policykit-gnome, seahorse, and totem.
For these subprojects we collected 252,831 commit messages
of 2,294 developers, written over the last 14 years.

PostgreSQL is an open source database management sys-
tem developed and maintained by a global community of de-
velopers and companies. The PostgreSQL community uses
two planet websites6 with slightly different contributors. We
merged both contributor lists and obtained 2,691 blog posts
of 95 active members from the last 7 years. PostgreSQL is
a single project hosted in a single source code repository.
We collected 30,745 commit messages from 34 developers,
written over the last 15 years. PostgreSQL accounts for the
smallest data set.

Python is an interpreted, general-purpose programming
language, which emphasizes code readability and maintain-
ability. From Planet Python7 we collected 18,660 blog posts
from 405 community members, published over the last 8
years. Thus, Python comprises the largest number of blog-
gers and blog posts in our data. Like PostgreSQL, Python
uses a single source code repository. We collected 45,116
commit messages from 178 developers, written over the last
20 years. Python is the oldest project in the collected data.

After the data preparation phase we found 93 matches of
committer and blogger names in Eclipse, 250 in GNOME, 12
in PostgreSQL, and 34 in Python. These people are actively
committing source code and blogging in their community.

3. BLOG USAGE
We explore how the studied communities use blogs, by

analyzing the publishing frequency and the post structure.

4planeteclipse.org
5planet.gnome.org
6planet.postgresql.org and www.planetpostgresql.org
7planet.python.org

3.1 Publishing Frequency
We studied the publishing frequency for the whole commu-

nities as well as for the single bloggers, while distinguishing
between active developers (committers) and other bloggers.

In all studied communities we observed several blog posts
each day. The mean time between two successive blog posts
within a community is 8.1 hours. On average, Python is the
most active community with one blog post each 3.9 hours.
GNOME bloggers publish one blog post each 4.9 hours on
average. The mean time between two posts in the Eclipse
community is 5.6 hours. PostgreSQL is the least active com-
munity with a post each 18 hours. This means the bigger
the community is, the more frequent blog posts it has.

We observed a significant difference between the blog pub-
lishing frequency and the commit frequency in the communi-
ties. On average, Eclipse and GNOME developers commit-
ted a source code change twice per hour, while PostgreSQL
and Python developers committed once in 4 hours.

Next, we study the total number of blog posts for the sin-
gle bloggers. The distribution of the individual number of
blog posts is positively skewed in all data sets. We therefore
use medians rather than means to describe the distribution.
In all communities, committers had written more blog posts
than other bloggers. As shown in Table 2 we found the
biggest difference in the Python community, where commit-
ters wrote more than twice as many posts as other bloggers.
PostgreSQL committers blogged nearly twice as much as
other community members. In all four data sets, 75% of the
committers had published more than 10 posts, while 75% of
the other bloggers accounted for less than 50 posts.

Table 2: Blog Posts per Person (Medians)
Eclipse GNOME PostgreSQL Python

Committers 18 28 21 35

Other bloggers 14 24 11 17

Analyzing the individual contributions, we found that com-
mitters blog more frequently than other community mem-
bers. Figure 2 shows the publishing frequency of bloggers in
the four communities. The distributions of the frequencies in
the data sets are positively skewed. There are bloggers who
post only once in 7 months. We therefore use again medians
rather than means to describe the distribution. The average
time between two successive blog posts based on median lies
between 17 and 33 days in all data sets. For committers the
median blog post rate is 26 days (39 days based on mean).
75% of all committers publish a blog post latest every 44
days. Other bloggers in the communities post once in 28
days (43 days mean). In all communities except Eclipse,
committers posted more frequently than other bloggers.

Eclipse committers publish every 34 days based on me-
dian and 44 days based on mean. Other bloggers in the
Eclipse community post every 29 days based on median and
every 40 days based on mean. 25% of the Eclipse com-
mitters post less often than once in 54 days, while 75% of
other bloggers in the community post more often than once
every 50 days. We discussed this observation with several
active members of the Eclipse community. We also ran-
domly selected 5 frequent Eclipse bloggers and investigated
their Web profiles and activities. We found that Eclipse
evangelists regularly provide information to the community
without being actively involved in the development.

125

Committers Others Committers Others Committers Others

Eclipse GNOME PostgreSQL Python

0
5

0
1

0
0

1
5

0

 #
 d

a
y
s
 b

e
tw

e
e

n
 t

w
o

 s
u

c
c
e

s
s
iv

e
 b

lo
g

 p
o

s
ts

2
5

7
5

1
2

5
1

7
5

Committers Others

Figure 2: Publishing Frequency of Bloggers

Finally, we analyzed how long the community members
have used blogs. Committers had a medium blog usage time
of 2.2 years. 75% of them have used blogs longer than 1.2
years. The medium usage time of other bloggers is 1.6 years,
75% of them have blogged for less than 2.6 years.

3.2 Post Structure
To study the structure of blogs, we examined the length of

the posts and analyzed the included source code paragraphs,
links, and images. We used regular expressions to extract
these elements. In the remainder of this section we describe
the analysis results.

The median blog post length is 150 words (273 words aver-
age), which is about 14 times the median length of a commit
message (11 words) in our data sets. As shown in Figure
3, the distribution of post lengths is positively skewed in
all data sets, since single posts comprise several thousand
words. The longest blog post of our data sets was entered
in the GNOME community. It contains 9,265 words and
describes experiments of the author with a new Linux init
system. 1,102 posts comprise less than 10 words, examples
from posts with 3 words are “GNOME lacks stetic.” and
“Amazing, absolutely amazing.”. Over 95% of all posts are
shorter than 1,000 words, which is equivalent to about 4
printed pages.

Committers Others Committers Others Committers Others

Eclipse GNOME PostgreSQL Python

0
2
0
0

4
0
0

6
0
0

8
0
0

#
 o

f
w

o
rd

s
 i
n

 a
 b

lo
g

 p
o

s
t

1
0
0

3
0
0

5
0
0

7
0
0

Committers Others

Figure 3: Average Lengths of Blog Posts

All committers except in Eclipse write shorter posts than
other bloggers on average. The Eclipse committers account
even for the longest blog posts on average in all communities

(214 words median). Over 75% of their blog posts are longer
than 100 words. The Python committers on the other hand
account for the shortest blog posts, 25% of which comprise
less than 45 words.

To our surprise, in only 934 of all 50,701 blog posts (1.8%)
we found source code paragraphs. On average each of these
posts contained 2.5 code paragraphs. As shown in Table 3,
only the PostgreSQL committers published less source code
in their blogs than other members of the community. On the
other hand, PostgreSQL committers posted 4.3 sections of
source code on average as opposed to 1.7 sections by other
community members. We conclude that developers do not
tend to include source code in their blog posts.

Table 3: Blog Posts Containing Source Code
Eclipse GNOME PostgreSQL Python

Committers 3.0% 1.2% 1.9% 3.6%

Other bloggers 1.4% 1.0% 3.0% 2.2%

We observed that links are frequently included in blog
posts. A total of 40,826 posts (80.5%) contain links. We
compared the behavior of active developers against other
community members in including links in their blog posts.
We found that on average 83.8% of committers’ posts and
77.2% of other bloggers’ posts contain links.

To further investigate the usage of links in individual posts,
we semi-manually investigated 5,313 links in 400 randomly
selected blog post samples (200 posts from developers and
200 posts from other bloggers) from each community using
regular expressions. In a first step we removed about 19%
of all links because they were off topic (e.g. links to private
sites). We found that committers on average included more
links to Wikis (11%) than other bloggers (8%). Similarly,
the posts of committers included more links to other blog
posts (28%) than the ones of other community members
(25%). We think that committers more than other com-
munity members tend to re-use knowledge rather than to
re-write or copy it.

The remaining links were links to newsgroups (1%), micro-
blogs (1%), project download pages (1%), videos (1%), other
downloads (3%), issue trackers (3%), code documentation
(7%), source code (7%), and other project-related websites
(39%) like the official project website.

Last, we investigated the usage of images in our data sets.
We found that 14,605 blog posts (28.8% of all posts) contain
images. The Eclipse and GNOME communities use images
more frequently (> 37% of all posts) than the PostgreSQL
and Python communities (< 18%). We think that this partly
results from the fact that several subprojects of Eclipse and
GNOME are user interface projects, while in PostgreSQL
and Python user interfaces are secondary concepts.

Again we manually investigated 1,231 images in randomly
selected samples of 400 blog posts from each community. We
observed that 25% of all included images are thumbnails of
social bookmarking sites, comment counters, or other auto-
matically added images. 15% of all images were not online
anymore and 24% were off topic (e.g. vacation pictures).
About 20% of the images are screenshots, 7% community
pictures (e.g. conferences), 6% graphics such as function
plots and charts, and 3% diagrams (e.g. UML diagrams).

Table 4 shows that committers tend to use more screen-
shots (22.3%) in their posts than other bloggers (18.0%).

126

Table 4: Images in Blog Posts (Semi-automated
Analysis)

Screenshots Community Graphics Diagrams

Committers 22.32% 6.84% 8.92% 3.39%

Other bloggers 17.96% 6.18% 3.33% 2.65%

We think that the high amount of screenshots in blog posts
indicates that software communities and in particular active
developers use this medium to communicate on a relative
high level. Further, based on the publication of community
pictures we conclude that the community itself is an impor-
tant topic in blogs.

4. BLOG CONTENT
We analyzed the content of the blogs to find out which

information developers post. We used the Latent Dirichlet
Allocation (LDA) topic modeling technique [4] to derive top-
ics from the blog posts in each project. With LDA a topic
emerges as a set of words that are correlated with a cer-
tain probability because of their co-occurrence in the same
document. Our topic extraction process involved four steps.
First, we created a document corpus for each community
comprising all blog posts of the community’s active (com-
mitting) developers, using a list of English stop words and a
stemmer to remove word inflexions beforehand. Second, we
performed multiple runs of the LDA algorithm on the four
data sets and experimented with different numbers of topics.
We found that using 50 topics leads to the most meaningful
results (i.e. a total list of 200 topics from the four data sets).
Third, we manually inspected the results and added topic
descriptions based on the top 20 most influential words (ob-
tained by LDA) and several associated blog posts (randomly
selected). Fourth, we grouped similar topics across the data
sets to project-independent topic categories.

Table 5 shows the list of extracted topics with their pop-
ularity and examples of influential words. To quantify the
popularity of these topics we calculated the occurrences of
the topics within the blog posts using the document-topic
matrix from LDA. Since a single blog post may contain mul-
tiple topics, we selected the most predominant topics per
post by evaluating for each post and topic the number of
words in the post belonging to that topic. We defined a
topic to be predominant if at least 10% of the words in the
blog post belong to the topic. This threshold results from
two observations. First, single words from most topics are
present in a large number of posts (e.g. “use”) and do not de-
termine the topic sufficiently without other words from the
topic. Second, over 90% of the posts contain at least one
predominant topic. Table 6 shows the most popular topics
with the according frequencies among the communities.

We found that the most popular topic is “functional re-
quirements & domain concepts”. This topic is predominant
in around 42% of all blog posts. Further the topics “commu-
nity & contributions” as well as “API usage & project doc-
umentation” are predominant in about a third of the blog
posts over all studied communities. With the exception of
PostgreSQL, the topic “architecture & packages” is predom-
inant in about one third of all posts. However, in the Post-
greSQL data set we were unable to extract this topic. The
topic “source code” is covered in less than 15% of all blog
posts.

Table 5: List of Identified Topics
Topic description Pop. Examples of influential words

functional requirements

& domain concepts

42.2% radio, listen, player, sync, song,

music, play, ipod, album, artist, band

community &

contributions

37.7% people, community, contribute,

group, help, news, post, comment

API usage & project

documentation

30.0% wiki, write, project, api, document,

use, review, text, output

release management &

announcements

28.6% release, try, helios, download, board,

committee, foundation

solution concepts &

technology

26.8% rest, uri, response, rule, parser,

syntax, widget, javascript, client

architecture & packages 24.7% start, component, register, import,

service, osgi, bundle, framework

target platform 23.4% linux, android, vm, platform, device,

system, run, environment

deployment &

dependencies

20.9% ant, zip, publish, target, jar, install,

depend, distribute, plugin

conferences 17.4% session, democamp, present,

eclipsecon, conference, event, talk

development activities 16.3% work, implement, develop, test,

code, improve, task, maintain

non-functional

requirements

15.7% cache, memory, perform, high,

quality, limit, secure, cost

communication,

discussion

15.7% send, address, mail, call, discuss,

answer, question, decision, phone

debugging &

troubleshooting

15.0% debug, address, process, warning,

problem, exception, raise, error

licensing 14.8% free, company, open, source,

community, business, foundation

source code 14.7% void, new, import, public, final,

string, class, return, private, true

competitors & related

work

14.6% more, think, performance, product,

oracle, sun, mysql, experience

version control 13.3% trunk, commit, repository, merge,

clone, svn, git, master, csv, push

tips, tricks & tutorials 11.2% tutorial, tool, practical, summary,

support, article, website

user interface & user

interaction

11.0% tab, view, menu, dialog, button,

text, mockup, select, click, interact

corrective maintenance 10.2% support, report, fix, improve, bug,

bugzilla, issue

database access &

external data

10.1% jpa, import, store, table, sqlite,

database, schema

testing 7.5% write, test, case, manual, unit,

check, build, system, patch, junit

continuous integration 2.5% resource, test, source, build,

configure, hudson, project, generate

From these results we conclude that developers include
more high-level than low-level concepts in their blogs. The
large amount of posts dealing with community aspects fits to
the“social nature”of blogs. We think that in particular open
source communities depend on the active discussion of social
aspects, dissemination of community news, and requests for
contribution. Python blogs frequently include information
about “API usage & project documentation”. As this is an
old, infrastructure project (> 19 years) we think that blog-
gers particularly stress the reuse of its API. In PostgreSQL
blogs non-functional requirements represent a popular topic.

127

Table 6: Most Popular Topics in the Communities
Eclipse GNOME PostgreSQL Python

functional

requirements &

domain

concepts

(47%)

community &

contributions

(36%)

functional

requirements &

domain

concepts

(47%)

API usage &

project

documentation

(50%)

community &

contributions

(33%)

functional

requirements &

domain

concepts

(33%)

non-functional

requirements

(40%)

functional

requirements &

domain

concepts

(42%)

architecture &

packages

(31%)

user interface

& user

interaction

(32%)

community &

contributions

(39%)

community &

contributions

(42%)

target platform

(26%)

architecture &

packages

(32%)

release

management &

announcements

(38%)

deployment &

dependencies

(36%)

solution

concepts &

technology

(26%)

development

activities

(31%)

conferences

(25%)

architecture &

packages

(36%)

This is reasonable, since such requirements are crucial for a
database system (e.g. performance, security, scalability etc.).

To further interpret the different topics developers write
about in blogs, we grouped our results into the following
categories.

1. Requirements: This category contains topics that are
related to requirements engineering, particularly appli-
cation domain concepts, requirements, and user inter-
face design. Further, topics describing or comparing
the project to competitors or describing related work
belong to this category, since these are also covered in
requirements engineering.

2. Community: These topics represent community and
social aspects like contributions of specific members,
communication, and project news. Another topic is
“conferences” describing events organized by the com-
munity and provide a possibility to meet, learn, and
exchange.

3. Project knowledge: This category captures topics re-
lated to knowledge and public information in a project.
The system’s API, documentation, and information re-
garding the usage of the system belong to this category.
But also tips and tricks as well as tutorials are a form
of project knowledge.

4. Deployment: Topics in this category deal with infor-
mation regarding the deployment of a system. This
includes topics that directly describe artifacts and pro-
cesses related to the system’s deployment, but also de-
pendencies and plugins. Further, information about
the target platform as well as the runtime environment
is included in this category.

5. Management: This category comprises all management
related topics. Apart from release management, we

Table 7: Topic Categories and their Popularity
Category Pop. Topics

Requirements 51% functional requirements & domain concepts,

non-functional requirements, competitors &

related work, user interface & user interaction

Community 45% community & contributions, communication,

conferences

Project

Knowledge

34% tips, tricks & tutorials, API, project

documentation

Deployment 33% deployment & dependencies, target platform

Management 33% release management & announcements,

continuous integration, version control

Implementation 29% source code, solution concepts & technology

System Design 26% architecture & packages, database access &

external data

Maintenance 25% corrective maintenance, debugging &

troubleshooting, testing

Activities 16% development activities

Business 15% licensing

found several other management topics like project
and technology management. As representatives of
configuration management we found continuous inte-
gration and version control.

6. Implementation: These topics describe implementa-
tion details like source code, solution domain concepts,
and other technology related artifacts.

7. System Design: Topics that describe architecture con-
cepts and discussions about dependencies and access
to external data belong to the system design category.

8. Maintenance: This category contains topics related to
corrective maintenance and testing. Debugging and
troubleshooting also belong to the maintenance cate-
gory although they are part of the entire development
process. The reason for this is that debugging and
troubleshooting are corrective tasks.

9. Activities: Topics in this category describe develop-
ment activities like modeling, learning and implement-
ing.

10. Business: This category comprises topics that deal
with legal issues like license questions as well as busi-
ness strategies and discussions about the open source
and closed source character of a project.

Table 7 shows the identified categories and how the topics
are distributed among them. Further, the table shows the
popularity of each category, which is the percentage of all
blog posts that contained at least one of the according topics.

The most popular category is Requirements, which is pre-
dominant in more than half of all blog posts. The second
most popular category is Community, which is predominant
in 45% of all blog posts. We think that this result is rea-
sonable, since community building is a major goal of so-
cial media. Implementation and System Design topics are
present in about 30% of all posts. Based on these results, it
seems that developers use blogs primarily to describe system
requirements and new features. Source code and low-level
concepts seem to be less frequent.

128

Eclipse GNOME PostgreSQL Python

Corrective Engineering
Forward Engineering
Management
Re-engineering

Fr
eq

ue
nc

y
in

 p
er

ce
nt

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 4: Frequencies of Commit Categories

5. BLOG INTEGRATION
To study how blogging activities are integrated into de-

velopers’ workflows, we explore publishing patterns of blog
posts and commit messages and investigate relations in the
content of these artifacts.

5.1 Publishing Patterns
We examined when developers post new blog entries. We

wanted to find out if developers make a particular use of so-
cial media after having accomplished certain types of devel-
opment activities. To answer this question, we investigated
developers’ work descriptions in the commit messages. That
is, our goal is to identify from the commit message the de-
velopment activity performed before writing a post.

To this end we classified the commit messages using the
classification algorithm proposed by Hattori and Lanza [8].
The algorithm classifies commit messages according to dis-
joint sets of keywords by assigning a commit message the
category of the first matching keyword in the text. Hattori
and Lanza proposed the four categories: forward engineer-
ing, re-engineering, corrective engineering, and management
and provided an according keyword list for each category.
Before the classification we applied a word stemmer on the
commit messages to obtain more generic matches. The algo-
rithm was able to classify about 82% of all commit messages,
while 1% of all commit messages were empty. We checked
the validity of the classification using a random sample of
500 messages. We observed an accuracy of over 75%. Figure
4 depicts the classification results.

In the next step, we used a sequential pattern mining al-
gorithm by Zaki [18] to analyze the sequences of developers’
commit messages and blog posts. Sequential pattern min-
ing [1] allows finding frequent patterns in sequence databases.
A sequence database contains a number of data sequences,
which are ordered lists of elements. Elements are also called
itemsets since they may contain multiple items. In our case,
an item is either a commit message of a certain category or
a blog post. We denote a commit message by a small letter
according to its category (e.g. “c” for corrective engineer-
ing) and a blog post by “B”. An example sequence would
be �{f, m}, {c}, {B}�, which comprises three elements. The
first element contains two commit messages describing a for-
ward engineering and a management activity. The second
element represents a commit message describing a correc-
tive engineering activity. The last element denotes a blog

post. Given a sequence database S and a minimum support
σ, sequential pattern mining yields all subsequences s of the
sequences in S that are contained in a fraction of at least σ
percent of all sequences. Each subsequence found is called
sequential pattern.

Sequential pattern mining allows to find regularities in
elements of a linear order. In our case the linear order is
established by the time when a commit message or a blog
post is published. We assume that items within an element
happen at the same time or as part of the same session.
We consider a session as a time interval, in which a devel-
oper performed a particular activity. Restricting a session
to simultaneously published commit messages or blog posts
makes less sense. Instead we use an upper bound of 120 min-
utes. This represents the mean session duration empirically
found by Maalej and Happel [10].

From the data sets we created a sequence database for
each project as follows. The list of items Id contains all
commit messages and blog posts of developer d in chrono-
logical order. The items are then inspected one by one,
oldest item first. A sequence ends when a blog post is
made. All items before and including this blog post belong
to this sequence. Items that occur within 120 minutes be-
long to same element within the sequence. For example the
sequence �{f}, {cf, r}, {m}, {c}, {B}� denotes five elements
ending with a blog post. The second element contains the
three items c, f, r which took place within 120 minutes. As
an additional step, we removed sequences �{B}� that consist
only of a single blog post. We repeated the sequence gener-
ation process for each developer d, resulting in a sequence
database per surveyed community.

We analyzed these sequence databases in order to answer
the following questions:

• Given developers’ blog posts, what is the probability
that the last commit message belongs to a certain cat-
egory?

• Given a commit message in a certain category, what is
the probability for a blog post after that commit?

For each project, we generated all sequential patterns of
length 2 that ended with a blog post with a maximum gap
value of 1. That is, two adjacent elements in a resulting
sequential pattern are at most consecutive. For example the
result �{c}, {B}� means that a developer published a post
after describing a corrective activity in a commit message.
We compared the according support values for all patterns
across the different communities.

Our results show that most blog posts (30 to 43%) fol-
low a commit message describing a corrective engineering
activity. Least blog posts (13 to 25%) follow a commit mes-
sage describing a management activity. Regarding commit
messages of the forward engineering and re-engineering cat-
egories we found two different situations. In Eclipse and
Python, there are less re-engineering than forward engineer-
ing commits which precede blog posts. In the other two
projects we observed the opposite situation. Figure 5 shows
the results.

We compare these results to the commit classification re-
sults (depicted in Figure 4). In the GNOME and the Post-
greSQL projects there are less commit messages describing
corrective engineering activities than commit messages de-
scribing forward engineering and re-engineering activities.

129

Eclipse GNOME PostgreSQL Python

Corrective Engineering
Forward Engineering
Management
Re-engineering

Fr
eq

ue
nc

y
in

 p
er

ce
nt

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 5: Categories of Commits Before Blog Posts

Table 8: Blogging Probability after Commits
Commit type Eclipse GNOME PostgreSQL Python

Corrective

Engineering

1.49% 2.67% 2.17% 4.20%

Forward

Engineering

1.35% 1.64% 1.16% 2.81%

Management 0.90% 2.95% 2.46% 2.79%

Re-engineering 1.13% 1.95% 0.99% 2.87%

Nevertheless, more blog posts are preceded by commit mes-
sages describing corrective engineering activities.

We also calculated the average probability for a blog post,
given a commit message of a certain category. Table 8 shows
the results. In the Eclipse and Python communities most
blog posts are published after corrective engineering activ-
ities. GNOME and PostgreSQL developers on the other
hand publish most blog posts after management activities.
Although the situation is different across the studied com-
munities, blog posts are more likely to happen after commit
messages describing corrective engineering or management
activities, than after forward engineering or re-engineering
commits.

5.2 Content Dependency
In the last question we tried to find out if there is a de-

pendency between the content of commit messages and the
content of blog posts. To achieve this, we randomly selected
a set of 200 sequences containing at least three commits and
a blog post. The three commit messages represented activ-
ities from the same category (e.g. three consecutive commit
messages describing corrective engineering activities). For
each of these sequences we created a document containing
the last three commit messages and the following blog post.
Then two independent persons manually rated the degree
of dependency between the commit messages and the blog
post, by giving each sequence one of the following grades:

• 3: Information strongly related to the commits (e.g.
summary of what has been done in the commits)

• 2: Information partly related to the commits (e.g. ad-
vice on coding conventions after code refactoring)

• 1: General project information (e.g. plans or infra-
structure)

Strength of dependency between commit message and blog post

M
ea

n
tim

e
in

 m
in

ut
es

 (l
og

 s
ca

le
)

1
2

5
10

50

0 1 2 3

Figure 6: Dependencies between Blogs and Com-
mits in Term of Time

• 0: Unrelated information (e.g. private notes)

For example the commit message “Enable multiple selection
in download dialog, now you can cancel more than one down-
load at a time. Note that this has no effect over the Pause
button, only over Stop. Bug #327734.” and the following
blog post“Also, gnome bug #327734 has just been half fixed,
meaning that you can now cancel more than one download
at a time” are strongly related (grade 3). We found that
in 94 of 200 cases (46.5%) the content of commit messages
and blog posts are unrelated (grade 0), whereas in 13 cases
(6.5%) they are strongly related (grade 3). We found infor-
mation partly describing the commit messages in 18 cases
(9.0%). In total 15.5% of the evaluated blog post samples
include information which refer to one or more of the devel-
oper’s previously entered commit messages. We think this
percentage shows that developers use blogs to illustrate their
changes to the code.

To understand the influence of the time between commit
messages and blog post on this result, we calculated the av-
erage time period for each grade. Figure 6 shows the results.
The strength of dependency between a commit message and
a blog post decreases with an increasing time period between
the commit and the post. This means that developers are
more likely to publish information about their recent activ-
ities than about old activities.

6. RELATED WORK
We focus the related work discussion on three fields: stud-

ies on mining blogs, studies on mining artifacts similar to
blogs, and research on social media in software engineering.

6.1 Mining Blogs
To our knowledge there are no published empirical studies

on how developers use blogs. However, there exist several
studies on mining blogs in general. We distinguish between
studies, which target community-related aspects and others,
which target content-related aspects of blogs.

Several authors discussed how to discover, visualize, and
study the dynamics of communities by analyzing the con-
tent of blogs. Gruhl et al. [6] propose a generative blog
topic model to identify external influences on bloggers and
their topics. Tseng et al. [16] explore different communi-
ties of interest in a set of blogs. They propose visualiza-
tion techniques that help to explore further dependencies
between blog topics. The goal of our study is to explore

130

basic questions on how developers blog. Therefore we fo-
cus on single, open source, development communities. We
model blog posts as community documents with multiple
latent topics, assuming that topics included in these blogs
are either related to software development or to the project.
This enables us to quantify the popularity of particular top-
ics of interest to the software engineering research, such as
“API usage”, or “community & collaboration”.

Other blog studies aimed at extracting meaningful knowl-
edge, automating trend discovery, and identifying opinion
leaders. Glance et al. [5] visualize the popularity of blog top-
ics over time and show a correlation with real world trends.
Similarly, we observed that developers are more likely to
blog about recent activities. Song et al. [13] identify opinion
leaders in a set of blogs based on information novelty and
influence on other blogs. We also observed that committers,
technology experts, and evangelists share their knowledge in
their development communities by using blogs. In addition,
we were able to quantify the semantic entities in developers’
blogs, i.e. which types of information are included.

6.2 Mining Related Artifacts
There is a large research community, which applies data

mining techniques to analyze development artifacts. Re-
lated studies analyze commits, work descriptions, and other
social media. Several authors explored commit histories to
identify reasons for software changes and to understand the
software evolution. Our work is based on these results. In
particular we use the algorithm of Hattori and Lanza [8]
to classify commit messages according to the development
activity accomplished by the commit.

Other authors analyzed informal artifacts, in which devel-
opers summarize what they have done in a particular work
session. Maalej and Happel [11] used NLP techniques to
analyze personal notes and commit messages. They found
several regularities in how developers describe their work.
This work extends these findings by showing that develop-
ers also describe their activities in their blogs.

Researchers spend considerable effort on the analysis of
other social media such as social networks and mailing lists.
Social network analysis itself is an established research field
[17]. Several publications study individual and group be-
havior as well as the explicit or latent structure of social
networks. We focus our research on the medium blog as
well as the blogging behavior of developers. Bird et al. [3]
create social networks from developer email communication
and study similarities to development teams. They show
that sub-community movements in these social media reflect
development activities. In our work we found similar rela-
tions between blogging as social activity and development
activities on an individual level.

6.3 Integrating Social Media
Recent papers [2, 7, 15] suggest the integration of social

media into the development environment and development
processes. Guzzi et al. [7] claim that integrating blog user
interfaces into the IDE would foster the reuse and sharing of
program knowledge. Treude and Storey [15] discussed how
the informal and lightweight use of social media can be inte-
grated into development processes. The authors concluded
that informal processes are usually carried out via commu-
nication mechanisms. Our study is not based on blogs that
are already integrated into the development environments

and processes. We analyzed the current practices of using
social media by a large number of developers. Our findings
on the blogging frequency, blogging time, and information
included give empirical evidence to the claims of these stud-
ies as well as new insights into integration “features”. For
example the type of images, links, and information included
by developers and the probability of blogging after certain
activities can be used to further tighten this integration.

7. DISCUSSION
We observed regular social activities in open source com-

munities. Individual developers only blog occasionally, but
the community as a whole constantly shares information
and produces several blog posts per day. The more mem-
bers a community comprises, the more frequently new posts
emerge. In particular committers actively contribute to the
community blogs. They have the largest number of blog
posts. They also publish more frequently and over a longer
time period than other members.

Developers continuously describe their work in short and
precise commit messages. Blog posts are less frequent than
commit messages, but comprise significantly more content.
They rarely include source code but frequently high level
information and images. Blog posts seem to have rather the
character of short documentations, tutorials, and howtos.

Studied developers blog in a high level of abstraction (i.e.
requirements and domain concepts). At first glance this is
surprising, as we expect developers to use models, technical
abstractions, and source code related concepts. However,
the public availability of blog information and its general
audience explain this granularity.

Further we observed a high amount of posts dealing with
community related topics like upcoming conferences. This
seems to be typical for social media. Developers include this
information orthogonally to other topics in their posts. We
think that in particular open source communities depend on
the active discussion of social and collaboration activities,
as dissemination news and requests for contribution.

We found that developers post more often after corrective
engineering or management tasks than after forward engi-
neering or re-engineering tasks. One silent implication of
this finding is that bug fixes and management activities rep-
resent important information for all stakeholders in a soft-
ware community. On the one hand, communicating the cor-
rective actions to the community might have two implica-
tions. First, developers publicly show their personal contri-
butions and merits – an important social and motivational
factor. Second, a high number of solved issues indicates a
healthy project. On the other hand, posts about manage-
ment activities like release announces and release plans make
the community aware of the overall project status. More-
over blog posts frequently contain information about recent
activities described shortly in previous commit messages.

Social activities like blogging are currently barely inte-
grated into development processes and tools. However, we
think the way developers blog calls for revisiting current
development practices with more emphasis on integrating
social activities and media. Tools can help developers to
reuse available knowledge in their posts, e.g. by linking to
blogs and wikis, or capturing particular screenshots. More-
over, tools may annotate blog posts with frequent topics to
facilitate information structuring and access. Exploration
of further social activities and their roles – in particular in

131

requirements engineering – will also lead to a better integra-
tion of blogging into development processes.

8. LIMITATIONS
We made four simplifying assumptions during our analy-

sis, which might imply limitations for validity of the results.
First, to connect blogs and commit messages we mapped
the names of committers and other bloggers using a text
similarity algorithm. We chose a pessimistic mapping that
creates rather false negatives than false positives. That is,
the size of the data sets was rather affected than the analysis
results. As a side effect, few bloggers, which we classified as
other community members might be committers. Second,
to study the integration of blog posts into the development
workflow, we use the commit time and blog publishing time
to order the corresponding artifacts chronologically. How-
ever, blogs and repositories may reside on different servers
with different time settings. On the other hand, considering
activities within two hours as the same session reduces the
effects of such synchronization errors. All the 200 manu-
ally investigated sample sequences, were correctly ordered.
Third, we used the heuristic of Hattori and Lanza [8] for the
categorization of commit messages. Testing the categoriza-
tion of 500 randomly selected commits, shows that this algo-
rithm has an accuracy of about 75% on our data. Therefore
the calculated blogging probability after a commit category
might be erroneous. This marginal error does not bias the
resulting trends, though. Finally, we selected a number of
Eclipse and GNOME subprojects, and could not analyze the
behavior of all committers in these communities. We think
our large selection is representative, which was confirmed by
active members of both communities.

9. CONCLUSION
How do developers blog? In this exploratory study we

found that developers post a new project-related blog en-
try every 26 days, on average. While 22% of the posts in-
clude screenshots, only 1.8% contain source code. Develop-
ers frequently link to existing information like Wiki pages
and other blog posts. Topics representing high-level con-
cepts such as domain concepts and functional requirements
are predominant in more than one third of developers’ blog
posts, while less than 15% deal with source code concepts.
Over 37% of developers’ posts include community related in-
formation. Further, developers are more likely to blog after
corrective engineering and management activities than af-
ter forward engineering and re-engineering activities. Their
blog posts frequently contain information about activities
described shortly before in commit messages.

Our results represent a starting point. We think that a
hypothesis-driven research should further explore the role
of social media and integrate it into development processes
and tools. Currently we are also studying how developers
use other social media like micro-blogs or content commu-
nities. In addition we plan to replicate our results using
different techniques such as semantic methods and author-
topic modeling techniques.

10. ACKNOWLEDGEMENT
This work has been supported by the FastFix project,

which is funded by the 7th Framework Programme of the
European Commission, grant agreement no. FP7-258109.

11. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

Proceedings of the Eleventh International Conference on
Data Engineering, pages 3–14. IEEE Comput. Soc. Press,
1995.

[2] A. Begel, R. DeLine, and T. Zimmermann. Social media for
software engineering. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pages
33–38. ACM, 2010.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining Email Social Networks. In
Proceedings of the 2006 international workshop on Mining
software repositories, pages 137–143. ACM, 2006.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. The Journal of Machine Learning Research,
3(4-5):993–1022, May 2003.

[5] N. Glance, M. Hurst, and T. Tomokiyo. BlogPulse:
Automated trend discovery for weblogs. In WWW 2004
Workshop on the Weblogging Ecosystem: Aggregation,
Analysis and Dynamics, volume 2004. Citeseer, 2004.

[6] D. Gruhl, D. Liben-Nowell, R. Guha, and a. Tomkins.
Information diffusion through blogspace. ACM SIGKDD
Explorations Newsletter, 6(2):43–52, Dec. 2004.

[7] A. Guzzi, M. Pinzger, and A. van Deursen. Combining
micro-blogging and IDE interactions to support developers
in their quests. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–5. IEEE, 2010.

[8] L. P. Hattori and M. Lanza. On the nature of commits.
2008 23rd IEEE/ACM International Conference on
Automated Software Engineering - Workshops, pages
63–71, Sept. 2008.

[9] A. M. Kaplan and M. Haenlein. Users of the world, unite!
The challenges and opportunities of Social Media. Business
Horizons, 53(1):59–68, Jan. 2010.

[10] W. Maalej and H. Happel. From work to word: How do
software developers describe their work? Working
Conference on Mining Software Repositories, pages
121–130, 2009.

[11] W. Maalej and H.-J. Happel. Can development work
describe itself? 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pages 191–200,
May 2010.

[12] W. Maalej, D. Panagiotou, and H.-J. Happel. Towards
Effective Management of Software Knowledge Exploiting
the Semantic Wiki Paradigm. In K. Herrmann and
B. Brügge, editors, Software Engineering, pages 183–197,
Bonn, Germany, 2008. GI.

[13] X. Song, Y. Chi, K. Hino, and B. Tseng. Identifying
opinion leaders in the blogosphere. In Proceedings of the
sixteenth ACM conference on Conference on information
and knowledge management, pages 971–974, New York,
New York, USA, 2007. ACM.

[14] The Nielsen Company. Led by Facebook, Twitter, Global
Time Spent on Social Media Sites up 82% Year over Year.
2010.

[15] C. Treude and M.-A. Storey. How tagging helps bridge the
gap between social and technical aspects in software
development. In ICSE ’09: Proceedings of the 2009 IEEE
31st International Conference on Software Engineering,
pages 12–22, Washington, DC, USA, 2009. IEEE Computer
Society.

[16] B. Tseng, J. Tatemura, and Y. Wu. Tomographic clustering
to visualize blog communities as mountain views. In WWW
2005 Workshop on the Weblogging Ecosystem. Citeseer,
2005.

[17] S. Wasserman and K. Faust. Social network analysis:
methods and applications. Cambridge University Press,
1994.

[18] M. Zaki. SPADE: An Efficient Algorithm for Mining
Frequent Sequences. Machine Learning, 42(1):31–60, 2001.

132

