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Abstract. Background: Software quality models have been proposed as a 
means for describing the concept of quality. Most quality models take an ab-
stract view on quality characteristics. Therefore, they are not able to integrate 
measurement tools and metrics for conducting quality assessments of real soft-
ware systems. To solve this problem, we developed a quality meta-model defin-
ing the structure of quality models that are detailed enough to specify quality 
characteristics and their links to metrics and measurement tools. Aim: In this 
paper, we present our evaluation of this meta-model in terms of its usability for 
constructing quality models that are suitable for quality assessments of real 
software systems. Method: For conducting the study, we developed an initial 
“proof-of-concept” quality model on the basis of static code analysis tools. This 
quality model was used for conducting quality assessments of Java-based soft-
ware systems. The results were analyzed regarding two criteria: (1) the diversi-
fication provided by the results and (2) the congruence of the results with an in-
dependently conducted expert-based evaluation of the systems. Results: While 
the difference in the assessment results between the various systems is rather 
small, a correlation with the expert evaluation could be proven. Furthermore, 
the study provided useful insights for further work and improvements. Conclu-
sions: We conclude that quality models based on the Quamoco meta-model are, 
in principle, capable of being operationalized for the automated quality assess-
ment of software systems.   
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1 Introduction 

Software quality is a crucial factor for the sustainable success of a software product. 
To understand and manage the complex and multi-faceted concept of software quali-
ty, a number of quality models have been proposed, such as [1][2][3][7]. Unfortunate-
ly, most models take an abstract view on quality characteristics and are not detailed 
enough to enable an operationalization in terms of a quality assessment of real soft-
ware systems. Besides the approaches for quality modeling, a variety of largely iso-
lated software tools exist for measuring specific metrics related to quality.  



 

 

The Quamoco1 project aims at closing the gap between the abstract definitions in 
existing quality models on the one hand and analysis tools on the other hand by 
providing a quality meta-model that allows creating quality models that are opera-
tionalized to assess the quality of software products. A quality meta-model defines the 
principal structure of quality models; this means it contains the knowledge about how 
quality can be modeled. The concrete quality models using this structure contain spe-
cific knowledge about what constitutes quality in a certain context (e.g., project, com-
pany) and are therefore specific for the environment where they are employed. For 
instance, thresholds for certain quality metrics can be different depending on the re-
spective application domain. Providing an appropriate quality meta-model is consid-
ered as important for defining consistent models that are useful for their defined ap-
plication purpose [4]. 

 

Problem. The Quamoco quality meta-model should allow modeling concrete quality 
models that are detailed enough to perform product quality assessments. However, 
from discussions with industry representatives and form reviewing existing work, we 
are aware of a number of expectations regarding quality models appropriateness for 
performing quality assessments. The key criteria we identified are: 

• The model supports reliable assessments. This means that if an assessment for 
a specific product is repeated, we obtain the same or at least a similar result. 

• The model provides valid assessment results. This means the assessment re-
sults are in concordance with the results obtained by other (independent) quali-
ty evaluations of the assessed products. 

• The assessments based on the model help to answer relevant questions by de-
cision makers, in particular ‘Which product is better with respect to quality in 
general or with respect to a certain quality aspect?’ This means that the re-
sults provided by the model have to differentiate between products of different 
quality. 

• The model allows performing assessments in a cost-efficient manner. 
 

Contribution. As a ‘proof of concept’ for checking whether quality models based on 
the proposed meta-model can fulfill these criteria, we created a first concrete quality 
model incorporating code measures that can be automatically determined by existing 
tools. This model and its structure are briefly described in Section 3. Since the model 
contains only measures automatically collected by tools and their evaluation is done 
in a fully automated manner using evaluation rules predefined in the model, we obtain 
repeatable and, accordingly, reliable assessment results. The high degree of automa-
tion also leads to a minimal amount of manual activities required to perform an as-
sessment for a specific product and thus results in high cost efficiency. The two re-
maining criteria that should be fulfilled by a model in order to be useful for quality 
assessments – the validity of the model-based assessments and the model’s ability to 
differentiate products of different quality – are evaluated in an empirical study pre-
sented in Section 4. 

                                                 
1 Parts of this work has been funded by the BMBF project Quamoco (grant 01 IS 08 
023 C), see also http://www.quamoco.de. 



 

 

2  Related Work 

A large number of quality models have been proposed in the literature, for example, 
[1][2][5][7]. These quality models define the term quality by decomposing it into 
more concrete quality attributes. However, they typically remain on a high level of 
abstraction and do not define how an actual quality assessment can be conducted us-
ing them. There is work on trying to establish a connection between those high-level 
quality models and measurement tools. For example, [10] and [11] developed an ex-
perimental quality model that specifies aggregation formulas needed for aggregating 
concrete measurement results. A more comprehensive approach for using quality 
models for quality assessments is being developed by the research project Squale2, 
where researchers are developing an explicit quality model and a tool for evaluating 
software products. The main difference to our approach is that Squale uses a fixed 
quality model, whereas in Quamoco, the quality model can be edited, with the explicit 
meta-model guaranteeing that the structure of the created models is interpretable by 
the assessment tool chain. Moreover, Squale is limited to automated measures while 
Quamoco allows the seamless integration of the results of manual analysis activities 
like inspections and reviews. 

Most existing work regarding quality models focuses on defining quality on a high 
level of abstraction. Work on using quality models for assessing the quality of soft-
ware products is much more limited. Moreover, empirical evidence on quality as-
sessments using these quality models is largely missing. 

3  The Quamoco Quality Model 

The quality assessment approach relies on a quality model that defines elements for 
specifying and measuring quality and for evaluating and aggregating the measurement 
results. The quality model is based on an explicit meta-model, whose main parts are 
described in the following. The quality model defines a product model of the software 
as suggested in similar forms in the literature [3][5]. The product model describes 
Entities and part-of and is-a relationships between them. When describing the quali-
ty of source code, typical entities in the model include Class and Expression, where 
Expression is further refined by Relational expression and Mathematical expression, 
which are in an is-a relation with Expression. The entities are characterized by At-
tributes, resulting in Factors. A factor is the central part of the quality model and 
describes a property of the software product with an influence on quality. A typical 
factor in the quality model is, for example, Correctness of Relational expression, 
which describes that a relational expression is correct if its operands have compatible 
types, units, scales, etc.  

While factors describe properties of the software product, Quality aspects in the 
quality model describe the quality characteristics that are in the focus of the analysis, 
like the “-ilities” of the ISO 9126 [7]. The influence of factors on quality aspects is 
modeled as Impacts. For each impact an explicit justification and direction must be 

                                                 
2 http:// www.squale.org 



 

 

provided in prose text. An impact may, for example, be “The Correct-
ness of Relational expressions has a positive impact on Reliability, because incorrect 
comparisons of data may cause arbitrary failures at runtime”. For conducting a quality 
assessment, the factors specified in the model must be quantified by Measures. A 
measure specifies which data have to be provided either by a tool or by manual in-
spection in order to provide an assessment of a factor.  

An important purpose of operationalized quality models is to specify how the col-
lected measurement values are aggregated, normalized, and transformed in evalua-
tions in order to yield a quality assessment in terms of quality aspects. These aggrega-
tions/normalizations and mappings to an evaluation scale can be specified in a do-
main-specific language named QIESL (quality impact evaluation specification lan-
guage), which can be used to specify rules for Impact evaluation and Quality aspect 
evaluation elements in the model. This language has a Java-like syntax and provides 
predefined functions for special purposes, e.g. a function for calculating a linear dis-
tribution, or a function for calculating the proportion of methods affected by a certain 
type of defect detected by a measure. The structure of this meta-model should make it 
possible to express the contents of existing quality models. In a previous study [4], we 
analyzed the expressiveness of the quality model and concluded that it is able to cover 
a large range of different quality models. 

 

Base Model. In order to evaluate the meta-model regarding its operationalizability, 
we developed a concrete quality model that is compliant to the meta-model. This 
quality model, though limited in size, shows how the meta-model concepts are ap-
plied in a meaningful way. The quality model describes 24 factors for the program-
ming languages C/C++ and Java. In this paper, we focus on Java; therefore, only 10 
factors are relevant. These factors have 11 impacts on quality aspects. For each im-
pact, a QIESL formula was specified in the corresponding impact evaluation. The 
evaluation results produced by these formulas are used as a basis for the further dis-
cussions in this paper. 

Figure 1 illustrates an excerpt of the quality model. The factor Structuredness of 
Class is measured based on a rule of the tool FindBugs3. The impact describes that the 
factor has an influence on the aspect Analyzability. The QIESL formula connected 
with the impact specifies how the measurement results for the factor are interpreted 
with respect to their impact on Analyzability. 

 

Structuredness Classof impacts Analyzability

result=linearDistribution(proportion(
size(“Structuredness of Class”),
size(“System”)), 0.7, 1.0)

QIESL

FindBugs
Rule: HE_HASHCODE...

Factor Aspect

Measure

Impact Evaluation
 

 Figure 1: Excerpt of the Quality Model 
                                                 
3 http://findbugs.sourceforge.net/ 



 

 

4 Empirical Evaluation 

This section describes the empirical evaluation of the appropriateness of the Base 
Model with respect to its application purpose, namely assessing software quality. We 
focus our investigation on the two aspects discussed in the introduction that have to 
be empirically evaluated. We first present the two corresponding study goals. In the 
following sub-sections, we derive criteria (and hypotheses) from these goals that will 
be check for the Base Model. For each criterion, we describe the evaluation procedure 
used and present and discuss the results obtained. 

Goal 1 (Diversification). Evaluate whether the assessment results obtained by ap-
plying the Base Model provide a sufficient level of diversification between products 
with different quality levels to answer questions such as ‘Which product is better with 
respect to quality in general or with respect to a certain quality aspect?’. 

Goal2 (Validity). Evaluate whether the Base Model provides valid assessment re-
sults, meaning that the assessment results are in concordance with the results obtained 
by another independent and valid approach for assessing product quality. 

4.1  Evaluation of Diversification 

To the best of our knowledge, there are no commonly accepted criteria for an appro-
priate level of diversification in the area of software quality assessment. The diversi-
fication provided on the bottom level of the model, where the collected measurement 
values are mapped onto values on the evaluation scale (in our case a number from 1 to 
6), strongly depends on the approach used to define the responsible mapping function. 

Benchmarking-based approaches typically define specific evaluation functions by 
analyzing a sample of products and calculating some statistics for the resulting meas-
urement values. If the sample is large enough and representative of the population of 
assessed products, these approaches can give any form to the resulting distribution 
and therefore can also provide a defined level of diversification (as far as the meas-
urement results differ between the products in the considered population). In many 
cases, such approaches create a distribution that is similar to an equal or uniform dis-
tribution, by mapping the quantiles of the measurement data distribution onto the val-
ues of the evaluation scale (e.g., [12]). 

Other approaches define the mapping between the measurement results and the re-
sulting evaluations using the knowledge of experts or target values based on empirical 
studies or literature reviews as in the Base Model presented. In such cases, it is much 
more relevant to check the level of diversification provided because a sufficient level 
of diversification is not automatically assured by the approach.   

In the area of operational research, where ‘diversification’ is a known concept, a 
series of measures are being discussed to determine diversification on a nominal or 
ordinal scale [9]. One of these measures commonly used is entropy (E), which origi-
nates from information theory and is defined as: 

 

E = -∑ pi ln(pi) for i=1…m, where pi is the probability to obtain scale level i 
 

E=0 means there is a probability of 100% to get the same assessment result for each 
product and, consequently, there is no diversification at all. On the other hand, a high 



 

 

value of E means the assessment results are well distributed across the scale levels. 
Since the maximum obtainable entropy depends on the number of levels offered by 
the scale, we can compute the normalized entropy (e) by dividing E with its maxi-
mum for a given number of scale levels (m), namely ln(m), and obtain a value be-
tween 0 and 1: 
 

e = - ln(m)-1 ∑  pi ln(pi) for i=1…m 
 

In order to use this equation to estimate the diversification provided by our evalua-
tions, we have to approximate the probability values pi for each scale level. We can 
do this by determining the ratio between the assessment results in the sample with 
level i (ni) and the total number of results in the sample (n): pi = ni / n for i = 1 …n. 

If we want to define a criterion for checking whether sufficient diversification is 
provided by the evaluations in the model, we first have to assume a certain kind of 
distribution of the assessment results. A maximal normalized entropy and thus diver-
sification is provided by a perfect equal/uniform distribution of the results on the 
evaluation scale.  

We consider a discretized normal distribution across the levels ‘1’ to ‘6’ with a 
mean of 3.5 and a variance of 1 (Figure 2) as the lower bound for an acceptable diver-
sification. This means that around two-thirds of the assessments provide a ‘3’ or ‘4’ 
(<1σ distance) and around 5 percent a ‘1’ or a ‘6’ (>2σ distance). The corresponding 
normalized entropy is ~0.80 when measured for the total population. However, de-
pending on the size of the sample used to estimate the pi values, it would not be un-
common to obtain an e value of not more than 0.60 for this kind of distribution. 
Hence, in the absence of other criteria, we use (as a rule of thumb) a threshold of 
≤0.50 for samples between 10 and 15 assessed products as an indicator of inappropri-
ate diversification. More accurate thresholds could be calculated by performing a 
simulation study using the actual sample size as input.  
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Figure 2: Normal distribution N(3.5,1) discretized on levels 1 to 6. 

 

However, not only the entropy value but also the range of the evaluation results and 
their distribution over the evaluation scale should be considered, for instance by visu-
alizing and checking them in a box plot chart. 
 

Procedure: During the study, the Base Model was used to assess 13 software products 
written in Java. They covered a range of open source projects different in type and 
size (JabRef 2.3, TV-Browser, RSSOwl, Log4j, Checkstyle, ConQAT, JabRef 2.5, 
Tomcat) and five closed source projects. Each product was assessed with respect to 8 



 

 

factors influencing the product quality by determining the corresponding impact eval-
uation result using grades 1 to 6. For each impact evaluation, the distribution of the 
evaluation results was presented by a box plot and the normalized entropy (e) was 
calculated.   
 

 Results: Figure 3 compares the discretized normal distribution that was used as a 
baseline with the results of a selection of impact evaluations. In total, five impact 
evaluations in the Base Model such as ‘Technical name x Conformity’, which is pre-
sented in Figure 3, rated all products with the best grade ‘1’ resulting in e = 0. Despite 
not using grades ‘5’ and ‘6’, the evaluation for ‘Class Comment x Consistency’ pro-
vided good diversification across the remaining grades resulting in an acceptable en-
tropy value (e=0.72). In general, we could observe that the results of most evaluations 
tend towards the lower half of the scale (i.e., grades ‘1’ to ‘3’). 
 

 
Figure 3: Discretized normal distribution N(3.5,1) compared to  

the results of selected impact evaluations for n=13 product assessments. 
 

 

Interpretation: In general, we see three possible reasons for the lack of diversification 
provided by certain impact evaluations. (1) The assessed products may be all very 
similar (in our case excellent) with respect to a factor without diversification (e.g., 
‘Technical name x Conformity’). (2) The factor might not be sufficiently operational-
ized by the measures collected. This can mean that the measures do not cover all rele-
vant aspects of the factor or that they measure only issues that rarely occur in practice. 
(3) The evaluation function used to map the measurement values to a specific grade is 
inappropriate (i.e., it does not differentiate sufficiently between good and bad results). 
Since we assessed a broad range of different products, it is likely that either the cho-
sen measures are not sufficient for covering the factor or the mapping (including the 
normalization) does not differentiate sufficiently. To precisely identify the possible 
reasons, more tests are necessary. However, the results already indicate that the sensi-
tivity of various impact evaluations has to be increased in order to provide better dif-
ferentiation between products of varying quality on the factor level. 
 

e = 0.73 

e = 0.73 

e = 0.00 

e = 0.85 
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Threats to Validity: Since we could not determine the quality of the assessed products 
with respect to each factor independently of the evaluations provided by the model, 
the major validity threat is that the 13 assessed products might be too similar with 
respect to certain factors to provide good differentiation for each factor without mak-
ing the assessment results instable due to oversensitive evaluation functions. 

4.2  Evaluation of Assessment Validity 

In order to evaluate the validity of the model-based quality assessments, we need an 
independently obtained criterion for product quality that we can compare with our 
assessment results. Since no measurement data were available that directly measure 
the quality or the quality aspects of interest for the assessed products, we used as the 
independent criterion an expert-based quality rating provided in the ‘Linzer Software-
Verkostung’ [8] for a set of five open source products. The rating is a combination of 
ratings provided independently by nine experienced Java experts. 

In the IEEE standard [13], several validity criteria are proposed for validating 
software quality metrics. Most of them assume that the collected measures and the 
independent criterion both use an interval or ratio scale. However, while the results of 
the Base Model assessments are provided as a value characterizing the product quality 
between 1 (best possible) and 6 (worst possible), the assessment results of the Linzer 
Software-Verkostung are provided on an ordinal scale as a ranking from best (1) to 
worst (5) product. Consequently, we had to limit our investigation to the validity cri-
terion ‘consistency’ [13], which can be applied on interval scale data. In our case, it 
will characterize the concordance between a product ranking based on the assess-
ments provided by our model and the ranking provided independently by a group of 
experts. This means that we determine whether the Base Model can accurately rank 
the set of assessed products with respect to their quality (as perceived by experts). 

Following [13], we measure consistency by computing the Spearman's rank corre-
lation coefficient (r) between both rankings, where a high positive correlation means 
high consistency between the two rankings. Since we want to check whether a poten-
tially observed positive correlation is just due to chance or is a result of using an ap-
propriate quality model, we state the (alternative) hypothesis HA with alpha = 0.05: 

 

HA: There is a positive correlation between the ranking provided by the Base Model 
(BM) and the ranking provided by the “Linzer Software-Verkostung” (LSV). 

 

r ( rankingBM, rankingLSV ) > 0   [ i.e., H0: r ( rankingBM, rankingLSV ) ≤ 0 ] 
 

Procedure: During the study, the Base Model was used to assess the quality of five 
open source products for which results of the Linzer Software-Verkostung were 
available: JabRef 2.3, TV-Browser, RSSOwl, Log4j, and Checkstyle. 

For the sake of simplicity, we assumed in the Base Model that each factor has the 
same relevance for the overall perceived product quality. Thus, the aggregated as-
sessment result for each product corresponds to a weighted sum with an equal weight 
for each factor. Taking the sum, we implicitly assume the same distance between the 
different grades (1 to 6). This means that the difference in quality between a product 
with grade 1 and a product with grade 2 is assumed to be equal to the difference in 
quality between a product with grade 2 and a product with the grade 3.  



 

 

In a final step, the assessed products were ordered by the results for their overall 
quality provided by the Base Model and compared with the ranking provided by the 
Linzer Software-Verkostung.  

 

Results: Figure 4 shows the assessment results using the Base Model and the resulting 
product ranking as well as the ranking of the Linzer Software-Verkostung. The calcu-
lated Spearman's rho correlation is r = 0.975, which is close to a perfect correlation of 
1. Hypothesis HA can also be accepted on a high level of significance (p=0.002) 
meaning that there is a significant positive correlation between the ranking provided 
by the Base Model and the ranking provided by the Linzer Software-Verkostung. 

 

Assessed Product Result using BM Ranking by BM Ranking by LSV 
Checkstyle 1.00 1 1 
Log4j 1.22 2 2 
RSSOwl 1.44 3 3 
TV-Browser 1.44 3 4 
Jab-Ref 2.3 1.89 4 5 

Figure 4: Comparison of the assessment results and ‘Linzer Software-Verkostung’ 
 

Interpretation: Despite the partly missing differentiation of the assessment results on a 
lower level of granularity (i.e., with respect to specific factors), the assessments of the 
overall product quality turn out to be consistent and thus valid when compared to an 
independent criterion for quality, in this case provided in the form of an expert-based 
assessment. Although this conclusion is supported by a very high and statistically 
significant correlation, there are some threats to validity that need to be considered. 
 

Threats to Validity: The most relevant threats we see are (1) we cannot guarantee that 
the criterion chosen for the validation, namely the expert-based quality rating, ade-
quately represents the quality of the products, (2) the generalizability of our results is 
limited by the fact that the number of assessed products (5 systems), their type (Java, 
Open Source), and the factors considered in the assessment are limited. 

5  Conclusions and Future Work 

In this paper, we presented a case study on how appropriate a concrete quality 
model based on the Quamoco meta-model is for assessing the quality of real software 
systems. We evaluated how the quality model can diversify software products of dif-
ferent quality on the level of quality factors. Moreover, we compared the results of the 
assessment with an independent quality ranking of the products performed by experts.  

In the model, we identified five factors for which we had to reject our assumption 
that the model is able to differentiate between products of different quality with re-
spect to these factor. This leads us to the conclusion that the sensitivity of the affected 
impact evaluations needs to be increased.  

However, our results also indicate that the model provides a quality assessment in 
line with the findings of an independent expert group. We found a very high and also 
statistically significant correlation between the manual quality ranking and the results 
of the automated assessment based on the quality model. 



 

 

We conclude that the Quamoco meta-model can be used to specify quality models 
that provide valid automated quality assessments of software systems. As future 
work, we plan to refine the impact evaluations in order to achieve better results with 
regard to diversification among software systems. Moreover, we plan to extend the 
quality model to include more quality characteristics and measurements. 
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