
Analyzing the Effect of Preprocessor Annotations on Code Clones

Sandro Schulze
University of Magdeburg

sanschul@ovgu.de

Elmar Jürgens
Technische Universität München

juergens@in.tum.de

Janet Feigenspan
University of Magdeburg

feigensp@ovgu.de

Abstract

The C preprocessor cpp is a powerful and
language-independent tool, widely used in different
programming languages (C, C++, Java). One core
feature of the cpp is that it allows to express
variability in programs using conditional compila-
tion. To this end, the code can be annotated on
different levels of granularity such as functions
or statements. Depending on this granularity, we
differentiate between disciplined and undisciplined
annotations. In this paper, we investigate whether
there is a relation between code clones and pre-
processor annotations. Specifically, we address the
question whether the discipline of annotation has
an effect on code clones. To this end, we perform
a case study on fifteen different C programs and
analyze them regarding code clones and #ifdef
occurrences. We found only minor effects of anno-
tations on code clones but a relationship between
disciplined annotations (and code clones). With
this work, we provide new insights on how/why
code clones are created. Furthermore, the results
can support the decision whether it is beneficial to
remove clones or not.

1. Introduction

The cpp preprocessor is a powerful text process-
ing tool tightly coupled with the C programming
language [1]. Due to its token-based nature, the
cpp is language-independent and by now, even
used with many other languages including C++ and
Java. The major advantage of the cpp is that it pro-
vides expressive capabilities to introduce variabil-
ity into programs using conditional compilation.

In fact, preprocessor directives (or annotations)1,
such as #ifdef, #ifndef etc., can be used on
any level of granularity. Conversely, this flexibility
makes it a root for poor code quality, caused by
the missing structure of the cpp tool. Amongst
others, the cpp is considered to be error prone
and to impair readability and maintainability of the
code [2], [3], [4], [5]. A pivotal role for the effect of
annotations on source code quality is whether these
annotations are disciplined or undisciplined. It is
commonly accepted that undisciplined annotations
contribute to unstructured, tangled source code
with the mentioned negative effects [6], [2], [7],
[8].

In Figure 1, we show two code fragments con-
taining an undisciplined and a disciplined annota-
tion, respectively. Undisciplined annotations (Fig-
ure 1 (a)) are made on arbitrary syntactical units,
such as parameters or branch conditions, and do not
align with the overall code structure. By contrast,
disciplined annotations (Figure 1 (b)) are mapped
to corresponding syntactical units such as func-
tions or statements and thus align with the code
structure. As a result, it is commonly accepted that
disciplined annotations alleviate the drawbacks of
annotations on source code quality [2], [9], [10].
However, we and others observed that disciplined
annotations may lead to replicated code fragments,
commonly known as code clones [6].

Code clones are considered to be common in
software development [11], [12], [13]. Further-
more, several studies reveal that code clones have
a negative effect on software structure, leading to

1. Although there are different possibilities of preprocessor
directives with cpp, we focus only on conditional inclusion
within this paper.

1 class Stack {
2 void push(Object o
3 #ifdef SYNC
4 , Transaction txn
5 #endif
6){
7 if (o==null
8 #ifdef SYNC
9 || txn==null

10 #endif
11)
12 return;
13 #ifdef SYNC
14 Lock l=txn.lock(o);
15 #endif
16 elementData[size++] = o;
17 #ifdef SYNC
18 l.unlock();
19 #endif
20 fireStackChanged();
21 }
22 }

1 class Stack {
2 #ifdef SYNC
3 void push(Object o,

Transaction txn) {
4 if (o==null || txn==null)
5 return;
6 Lock l = txn.lock(o);
7 elementData[size++] = o;
8 l.unlock();
9 fireStackChanged();

10 }
11 #else
12 void push(Object o) {
13 if (o==null)
14 return;
15 elementData[size++] = o;
16 fireStackChanged();
17 }
18 #endif
19 }

(a) undisciplined (b) disciplined

Figure 1. Example for effect of annotations on
code cloning

increased maintenance effort, inconsistent changes,
and introduction of errors [14], [15], [16], [17].
Beyond that, several studies exist that aim at iden-
tifying causes for code clones as well as evaluating
the effect and occurrence of clones on the software
system [18], [19], [20]. Unfortunately, these studies
do not investigate the effect of preprocessor anno-
tations.

Research problem. Disciplined annotations
align with the source code and thus limit expres-
siveness. On the other hand, they alleviate the
drawbacks of annotations on source code quality.
Furthermore, recent observations indicate that such
annotations cause code clones. However, up to now
it is unclear whether disciplined annotations lead
to an increased amount of code clones as a matter
of fact. If this is the case, this poses the question
whether replacing undisciplined annotations by dis-
ciplined ones (at the expense of code clones) really
improve the source code quality.

Contribution. In this work, we extend existing
studies by a large case study that investigates
the relation between code clones and preprocessor
annotations. As a result, we provide new insights
on why and where code clones occur. Furthermore,

the information of our analysis can be useful to
support the decision whether to remove clones or
not.

2. Background

A variety of research has been done for both,
code clones and preprocessor directives. In this sec-
tion, we give an overview of terms and definitions
relevant in this paper.

2.1. Code Cloning

Code clones are source code fragments that are
similar to each other. Different types of clones exist
depending on the degree of similarity between two
code fragments [21]. Code fragments that are iden-
tical are called type-I or exact clones. Furthermore,
code clones that differ only slightly are called type-
II clones. For instance, differences due to renaming
of variables or constants typically lead to type-
II clones. Finally, type-III or gapped clones are
similar code fragments that differ due to adding,
removing, or changing code units of at least one
of the code fragments. Finally, two code fragments
that are identified as code clones are called a clone
pair. Additionally, a set that consists of two or
more code clones is a clone group.

Different approaches exist to detect the different
types of code clones. First, text-based approaches
use simple string or character comparison and
thus detect only type-I clones [22]. Second, token-
based approaches perform a tokenization on the
source code and compare these tokens to detect
type-I and type-II clones [23]. Third, AST-based
approaches create a grammar-based abstraction of
the source code, the Abstract Syntax Tree (AST). A
sophisticated variant is the PDG-based approach
hat additionally takes data and program flow into
account. Both approaches detect type-I and type-II
clones, based on their internal source code repre-
sentation [12], [24]. Finally, some approaches can
even detect type-III clones such as ConQAT that
defines a threshold for the maximum edit distance
between clones [25].

2.2. Annotations in cpp

Annotations, or more specifically conditional
inclusion using #ifdef2, can be used to generate
different variants (with different functionality) of a
program [7]. Each annotation contains a boolean
expression that is evaluated by the cpp tool to
determine whether the corresponding code is in-
cluded in a certain program or not. Usually, such
an expression represents a feature, an increment
in user-visible functionality [26]. As a result, an
annotated program is rather a set of programs and
thus, can be considered as a Software Product Line
(SPL) [27].

Generally, annotations can be classified into two
categories, based on the syntactical units they
annotate: disciplined and undisciplined annota-
tions [6]. This, in turn, raises the question where
the borderline between these two categories is.
Obviously, defining such a borderline depends on
several criterias. Liebig et al. propose a definition
for disciplined annotations and accordingly, anno-
tations of one or a sequence of functions, type
definitions, statements, and elements inside type
definitions are disciplined [6]. We rely on this
definition within this paper since it is reasonable
and suitable for our purposes. For clarification, we
depict some examples for both kinds of annotations
in Figure 2. For a more detailed overview of
undisciplined annotations we refer to the work of
Liebig et al. [6].

3. Code Clone Analysis Process
In this section, we describe the case study we

performed. First of all, we introduce research ques-
tions, we address by means of our case study.
Afterwards, we present the general design of the
study and the C programs that were subjects in our
study.

3.1. Research Questions

We perform the case study to gain insights on
the relation between code clones and annotations

2. Within this paper, #ifdef is a placeholder for all possi-
bilities of conditional inclusion: #ifndef, #if, #elif,
#else and #endif

1 need redraw =
check timestamps(

2 #ifdef FEAT GUI
3 gui.in use
4 #else
5 FALSE
6 #endif
7);

1 int n = NUM2INT(num);
2 #ifndef FEAT WINDOWS
3 w = curwin;
4 #else
5 for (w = firstwin; w != null;
6 w = w−>w next,

−−n)
7 #endif
8 if (n == 0)
9 return window new(w);

(a) examples for undisciplined annotations
1 void tcl end() {
2 #ifdef DYNAMIC TCL
3 if (hTclLib) {
4 FreeLibrary(hTclLib);
5 hTclLib = NULL;
6 }
7 #endif
8 }

1 typedef struct {
2 typebuf T save typebuf;
3 int typebuf valid;
4 struct buffheader

save stuffbuff;
5 #if USE INPUT BUF
6 char u ∗save inputbuf;
7 #endif
8 } tasave T;

(b) examples for disciplined annotations

Figure 2. Examples for undisciplined and dis-
ciplined annotation

in preprocessor-based programs. To achieve our
goals, we formulate research questions that we
address by means of our study.

RQ 1 To what extent do code clones occur in
annotated #ifdef blocks ?

Several studies reveal the existence of code
clones in C programs. However, none of these
studies analyzes how much of the detected code
clones occur in preprocessor blocks. We aim at
answering this question with the help of our code
clone analysis. As a result, we can evaluate whether
preprocessors are prone to code clones or not.

RQ 2 Are there differences between disci-
plined and undisciplined annotations regarding
code clone occurrence ?

This question is motivated by the observation
that disciplined annotations may come at the
expense of introducing code clones [6]. Conse-
quently, we evaluate whether this observation is
accidental or may depend on the discipline of an-
notations. Answering this question may also affect
the evaluation of code clones regarding their harm-
fulness. For instance, if a code clone is introduced
in order to overcome undisciplined annotations,
should the clone considered as harmful ? As a

direct consequence, this information may also sup-
port refactoring decisions in terms of code clone
removal.

3.2. Study Design

This section gives an overview of our study
design, especially of the measures we compute to
address the research questions.

For our study we perform a code clone anal-
ysis supplemented by clone detection and source
code analysis. The detailed process is described
in Section 3.3. As a result, we gain information
on the amount of code clones, #ifdef code (i.e.,
code that is contained between #ifdefs), and
#ifdef clones (i.e., code clones that are enclosed
by #ifdefs). Subsequently, we compute different
measures based on these analysis results .

First, we compute the code clone and #ifdef
coverage.The term coverage denotes the part of
the source code that is covered by code clones
or #ifdef blocks either. These measures provide
us with general information on the systems and
whether it is worth to further investigate these
systems or not.

Second, we compute the #ifdef clone coverage
to investigate how much of the overall code con-
tains #ifdef clones. Additionally, we compute the
ratio of #ifdef clones compared to a) all detected
code clones (#ifdef-clone/clone ratio) and b) the
total amount of annotated code (#ifdef-clone/#ifdef
ratio). With these measures we can determine
whether there other correlations that are likely to
cause #ifdef clones.

Finally, we compute all of our measures for
disciplined and undisciplined systems separately
and thus, can compare both categories.

3.3. Analysis of #ifdef Clones

In this section, we give an overview of the
design of our code clone analysis process. For
answering our research questions, we set up a
three-staged process, which we depict in Figure 3.
In the following we explain the three phases clone
detection, source code analysis and code clone
analysis in detail.

Clone Detection

ConQAT

Analysis
Source Code Analysis Code Clone Analysis

source code
annotation

Mapping of code
clone and #ifdef

information

#ifdef analysis

clone report

#ifdef information

Figure 3. Outline of the clone analysis process

Clone Detection. For clone detection, we use
ConQAT3, a token-based clone detection tool that
can detect gapped clones. This is an important fact,
since such clones may occur within disciplined
annotations, as indicated by our example in Fig-
ure 1. Initially, the source code is transformed into
a token sequence while comments and whitespaces
are removed. Afterwards, ConQAT performs nor-
malization on the token sequence, which can be
divided into two parts. First, statements are created
from the token sequence since it leads to better
clone detection results (e.g., ignoring clones that
start/end within statements). Second, tokens are
normalized by user-defined rules, which eliminates
differences between the specified syntactical units
such as identifiers or constants. For instance, we set
up the normalization in such a way that differences
between literals such as boolean, string, or numbers
are ignored for the actual clone detection. By
contrast, we do not normalize differences between
identifiers.

Finally, the clone detection is performed on
the normalized token sequence. In a nutshell, a
suffix tree is built on the token sequence and then,
the algorithm searches for all identical or similar
substrings in the tree. The user can influence the
clone detection result by specifying different pa-

3. www.conqat.org

rameters such as the minimum clone length. For
our purposes, we selected a minimum clone length
of eight statements. Furthermore, we performed a
gapped clone detection so that gapped clones are
detected as well. Therefore, we have to specify the
gap ratio, a measure that determines the maximum
number of gaps between two code clones. We
selected a gap ratio of 0.25, which means for a
clone pair of eight statements that two statements
of at least one clone may have been deleted, added,
or changed. The result of the clone detection is
subject to post-processing such as filtering out
overlapping clone groups. At the end, a clone
report is generated, containing information on all
source files as well as on all clone groups and its
corresponding code clones, that can be used for
further usage. For a more detailed description of
the clone detection algorithm, we refer to [14].

Source Code Analysis. For obtaining informa-
tion on occurrences of annotations, we have to
analyze the source code that was subject to clone
detection in the previous step. To this end, we
firstly annotate corresponding source files using
src2srcml4, a source code markup language that
annotates the source code in an xml-like fashion
without breaking its overall structure [28]. After-
wards, we detect #ifdefs in the annotated code
using XPath, an xml path language that can be
used to navigate through the nodes of an xml
document. As a result, we obtain all occurrences of
#ifdef annotations, identified by their absolute
position (i.e., line number) in the source file. Note,
that we get this information for complete #ifdef
blocks, that is, code fragments that are enclosed by
annotations such as #ifdef and #endif. Finally,
the results of this analysis can be used for code
clone analysis.

Code Clone Analysis. For our analysis, we map
the detected code clones to the detected #ifdef
annotations, based on their absolute position in the
source file. We illustrate the respective mapping
algorithm in Figure 4.

Our algorithm has two inputs: A list of all clone
groups from the clone report, and a list of prepro-

4. http://www.sdml.info/projects/srcml/

proc mapClones(cg, pa)
Input: cg = list of clone groups, pa = list of
annotations
for each cgi ∈ cg do

get all code clones from cgi
for each clone do

fa ⊂ pa = all annotations for the file
containing the clone
if (a ∈ fa) is within clone then

clone′ = new clone with the position of
a
create new ifdef clone group with clone′

(if this is the first clone of cgi)
otherwise add clone′ to existing ifdef
clone group (for cgi)

end if
end for

end for
Result: list of #ifdef clone groups

Figure 4. Algorithm for mapping preprocessor
annotations to code clones

cessor annotations together with the information
where they can be found (i.e., the file and the
line number). For the mapping, we consider the
code clones of each clone group separately. Then,
we compare the position of each clone with the
positions of all preprocessor annotations that have
been found in the file containing the clone. We have
a match, if at least one complete #ifdef block
is within the clone. Hence, #ifdef blocks that
are not entirely located within a code clone (e.g.,
they start or end outside the clone) are ignored.
We imposed this restriction because partial #ifdef
clones may lead to less accurate results. Further-
more, the #ifdef block must have a length of
at least three source lines of code, excluding the
lines containing the annotations, so that we can
prevent #ifdef clones that occur accidental. In case
of a match, we create a new #ifdef clone. We do
this for all clones of a clone group. Finally, all
corresponding ifdef clones are merged to an #ifdef
clone group.

3.4. Study Objects

For our case study, we use fifteen software
systems written in the C programming language.
We selected programs of different size and domains
to have a representative sample. Furthermore, to
evaluate our second research question, we split the
sample in two comparable groups: Seven systems
are disciplined (i.e., contain mostly disciplined
annotations), eight systems undisciplined (i.e., con-
tain 12% undisciplined annotations in average).
The classification is based on a recent study of
Liebig et al., who analyzed the discipline of an-
notations in C programs [6]. Beyond that, both
groups are comparable regarding size and domains.
In Table 1 we give an overview of the analyzed
programs.

un
di

sc
ip

lin
ed

program # SLOC description

cherokee 47 983 Web server
gnuplot 67 854 plotting tool
lynx 111 994 Web browser
php 471 604 program interpreter
privoxy 24 784 proxy server
sendmail 85 094 mail transfer agent
tcl 122 460 program interpreter
vim 233 426 text editor

di
sc

ip
lin

ed

berkeleyDB 160 283 database system
dia 121 117 diagramming software
ghostscript 491 703 postscript interpreter
lighttpd 37 380 Web server
minix 54 627 operating system
parrot 84 222 virtual machine
python 331 014 program interpreter

Table 1. Overview of analyzed C Programs

4. Results

In this section, we present the results of our case
study.

First of all, we observed that in all systems,
annotated code as well as code clones exist. We
show the results in Figure 5. In undisciplined
systems (Figure 5 a) the coverage of annotated code
is 32, 7%, whereas it is 16, 7% on average for the
disciplined systems (Figure 5 b). By contrast, the

0

10

20

30

40

50

60

co
ve

ra
ge

 in
 %

0

10

20

30

40

50

60

cherokee gnuplot lynx php privoxy sendmail tcl vim

(a) undisciplined systems

#ifdef coverage
clone coverage

0

10

20

30

40

50

60

co
ve

ra
ge

 in
 %

0

10

20

30

40

50

60

berkeleyDB dia ghostscript lighttpd minix parrot python

(b) disciplined systems

#ifdef coverage
clone coverage

Figure 5. Clone and #ifdef coverage of the
analyzed systems (note the different scales)

disciplined systems exhibit a higher clone coverage
(10% onn average) compared to the undisciplined
systems (4, 3% on average). Furthermore, six of
eight undisciplined systems have a clone coverage
less than 3%. Nevertheless, all systems contain
code clones as well as #ifdef annotated code
in a reasonable amount and thus, are further inves-
tigated.

To evaluate RQ 1, we measured the #ifdef clone
coverage supplemented by the clone/#ifdef-clone
and the #ifdef/#ifdef-clone ratio. We depict our
results in Figure 6. Note that black spots indicate
undisciplined systems and white spots indicate
disciplined systems. The scatter plot in Figure 6 a
indicates that the #ifdef clone coverage is rather
small. Indeed, only four systems exhibit a cov-
erage of more than 0, 5%, and only one system
(BerkeleyDB) has an #ifdef clone coverage higher
than 2%. In the same way, Figure 6 b indicates
that only a minor fraction of all detected code
clones occur within #ifdef blocks, independent of
the actual amount of clones. Similarly, only a small

#i
fd

ef
 c

lo
ne

 c
ov

er
ag

e
[in

 %
]

0

0.5

1.0

1.5

2.0

code size [SLOC]
0 100 000 200 000 300 000 400 000 500 000

(a) #ifdef clones vs. code size (correlation coefficient: 0,64)

#i
fd

ef
-c

lo
ne

/#
ifd

ef
 ra

tio
 [i

n
%

]

0

2

4

6

8

10

12

14

#ifdef code [SLOC]
0 50 000 100 000 150 000

(c) #ifdef clones vs. #ifdef code (correlation coefficient: 0,34)

#i
fd

ef
-c

lo
ne

/c
lo

ne
 ra

tio
 [i

n
%

]

0

5

10

15

20

25

code clones [SLOC]
0 20 000 40 000 60 000 80 000 100 000

(b) #ifdef clones vs. code clones (correlation coefficient: 0,77)

Figure 6. Analysis results for #ifdef clones: a) w.r.t the overall code size, b) w.r.t all code clones
c) w.r.t annotated code

fraction of the overall #ifdef code contains code
clones (Figure 6 c). We observed that those systems
with the highest amount of #ifdef code contain
only few #ifdef clones. By contrast, amongst the
systems with a rather small amount of #ifdef code
(< 25K SLOC), in particular systems #ifdef code
contains up to 14% #ifdef clones.

With RQ 2, we aim at investigating whether
there are differences between disciplined and
undisciplined systems regarding the amount of
#ifdef clones. Therefore, we compare the amount
of #ifdef clones in disciplined and undisciplined
systems. Although #ifdef clone coverage is rather
low, Figure 6 a reveals that the amount of #ifdef
clones is considerable higher in disciplined sys-
tems. We observed that five of the eight undis-
ciplined systems have a coverage close to zero
and the average #ifdef clone coverage is 0, 15%.
By contrast, four of the seven disciplined systems
have an #ifdef clone coverage of approximately
0, 5% or higher (0, 63% in average). Furthermore,
we observed that annotated code in disciplined
systems is more likely to contain clones than in
undisciplined systems (cf. Figure 6 c). Although
the latter systems contain more annotated code,
in six systems this code contains nearly no code
clones. Contrary, out of the six system that contain
2% or more code clones in #ifdef blocks, five are
disciplined systems. All of these observations are
confirmed by a medium or even high correlation
coefficient we computed, using the method of
Pearson.

5. Discussion

The results we presented in the previous section
imply that the effect of #ifdefs on code clones is
rather small, but that there are differences between
systems with disciplined/undisciplined annotations.
In the following we interpret these results and
discuss threats to validity of our case study.

5.1. Interpretation of Results

The results of RQ 1 reveal that the amount of
code clones in preprocessor annotation is rather
small (with minor exceptions). This especially
holds for the systems with a high amount of
undisciplined annotations, where all measured data
indicate that #ifdef clones are negligible. However,
due to our very strict definition of #ifdef clones
(only complete annotated blocks are considered),
this result can be interpreted as a lower bound.
Consequently, a more fine-grained investigation of
#ifdef clones, where partial #ifdef clones are al-
lowed up to a certain threshold, may even increase
their overall amount. Beside this, a larger case
study with more systems can also support the in-
vestigation of #ifdef clones in cpp-based programs.

For RQ 2, the results indicate that #ifdef clone
coverage is significantly higher for disciplined
systems compared to undisciplined systems. This,
in turn, confirms the assumption that disciplined
annotations lead to code clones. Furthermore, our
data reveal that other factors such as code size
and amount of code clones do not influence this
observation and thus, can be neglected.

To evaluate whether the observed differences
between disciplined and undisciplined systems are
significant or rather occurred randomly, we con-
ducted a significance test. To this end, we applied
an adapted version of the Mann-Whitney-U test:
Instead of providing the significance level of the
test, we check whether the calculated U values
are significant according to a table specifically
designed for small sample sizes [29], [30]. The
results of the Mann-Whitney-U test reveal that
the differences for the #ifdef/#ifdef-clone ratio as
well as the #ifdef clone coverage are significant.
First, for the #ifdef/#ifdef-clone ratio, we obtained
the following results: U = 6, p < 0.01. Second,
for the #ifdef clone coverage our test produced
the following results: U = 12, p < 0.05. Since
both significance levels are smaller than 0.05, we
can assume that the differences we observed are
significant and not caused randomly.

Revisiting the introduced research problem, our
study results indicate that disciplined annotations
increase the amount of code clones compared to
undisciplined one. However, due to the small #ifdef
clone coverage, the effects of these clones may be
not as negative as for undisciplined annotations.
Consequently, the benefits of disciplined annota-
tions outweigh the drawbacks of code cloning and
thus code clone removal may be not necessary.

5.2. Threats to Validity

Single Programming Language. Although the
cpp tool is language-independent and thus used
with several programming languages, we only
considered C programs within our study for two
reasons. First, for the selected systems we had prior
knowledge about the discipline of annotations,
based on the study of Liebig et al. [6]. Second,
with the decision for one specific language, we
can prevent that certain mechanisms of different
languages influence the amount of (#ifdef) code
clones. Finally, the cpp tool has been used with C
programs for a long time and thus the systems are
mature and different case studies exist. Overall, we
assume that this decision may limit generalizability
but does not affect our results.

Selected Software Systems. With case studies
on software systems, there is a risk that the selected
systems bias the study results. To mitigate this
effect, we selected systems of different size and
of different domains as far as this was possible.

Clone Detection. Both, initial clone detection as
well as #ifdef clone detection, have been performed
automatically, based on certain input parameters.
Due to the large code amount, it is impossible to
check each clone regarding the precision of the
clone detection. However, we randomly selected
samples (for code clones and #ifdef clones) from
each subject system for a manual review process.
All of these samples w ere true code clones that
is, we detected no false positives. Furthermore, for
the clone detection we selected parameters that
are commonly accepted and thus prevented that
meaningless or even false code clones are detected.

Study evaluation. During interpreting the re-
sults of our case study, we made several ob-
servations regarding our research questions. To
strengthen our results, we conducted statistical
computations, namely Pearson’s correlation coeffi-
cient and a significance test. The main problem of
the statistical evaluation is the quite small sample
set represented by the fifteen subject systems. Al-
though the statistic results indicate the correctness
of the relations we observed, we have to be careful
with the conclusions we draw. Hence, a larger case
study with more systems is necessary. Neverthe-
less, our study results provide first insights on the
relation between preprocessor annotations and code
clones.

6. Related Work

For Both, the preprocessor cpp as well as code
cloning, we give an overview of prior work that is
related to ours.

For cpp, Ernst et al. conducted a large case study
that aim at investigating the usage of preprocessor
annotations and its implications [2]. In their work,
they highlight advantages of disciplined preproces-
sor use and why this fails regularly. However, they
mainly focus on usage of macro definition such
as #define and thus conditional inclusion is just

mentioned partly. Furthermore, preprocessors are
not considered in the context of clones (and vice
versa). Recently, Liebig et al. presented compre-
hensive results regarding preprocessor usage on
which we partially base our paper. First, they
analyzed how the cpp tool is used to implement
variability in programs. Therefore, they conducted
a large case study and defined several metrics for
measuring system properties such as granularity or
types of extensions [31]. Although they provide
some metrics that may indicate the occurrence of
code clones such as homogeneous extensions, they
do not focus on code clones explicitly. Second, they
analyzed the discipline of annotations in cpp-based
programs [6]. In this context, they give a defini-
tion for disciplined annotations and conducted a
case study on how disciplined and undisciplined
annotations are used. Interestingly, they state that
there is a trade-off between expressiveness due to
undisciplined annotations and code replication due
to disciplined annotations. However, different to
our work they did not analyze to what extent code
clones occur in systems with different discipline of
annotations.

Amongst the several case studies on code clones,
some of them specifically focus on clones in C
programs and thus, are related to our work. First,
Mayrand et al. presented an experiment on function
clones in C programs [18]. Within their work
they propose a taxonomy for function clones as
well as different notions of similarity, based on
metrics. However, their code clone analysis focus
only on function blocks and thus, they do not
consider preprocessors as we do. Second, Roy et
al. conducted a large case study on code clones in
open source systems (C & Java) [19]. They pro-
pose different metrics such as clone density, clone
location and clone size for comprehensive insights
on cloned code and verified their results manually.
Nevertheless, they also focus rather on clones on
function level. By contrast, we considered code
clones in the context of preprocessor annotations.

7. Conclusions and Future Work

In this paper, we conducted an empirical study
on fifteen C systems to analyze the effect of
preprocessor annotations on code clones. Based
on our results, we detected only minor relations
between annotations and code clones. Hence, we
state that preprocessor annotations have no obvious
effect on code cloning. Beyond that, we observed
significant differences between systems with dis-
ciplined and undisciplined annotations. Our results
indicate that systems with disciplined annotations
are more prone to code clones than systems with
undisciplined annotations. However, due to the
small amount of #ifdef clones we conclude that it
is probably more beneficial to manage these clones
instead of remove them (and probably introduce
undisciplined annotations).

Regarding our results, there are still questions
that remain unanswered: For what types of an-
notations the code clones occur in particular? Is
there an overall relation between code clones and
variability in cpp-based systems? How does our
result change for different types of clones (e.g.,
only type-II clones or partial #ifdef clones) and
more subject systems? In future work, we will
focus on these questions to gain more insights on
the relation between code clones and preprocessor
annotations. Beyond that, we aim at providing a
bigger picture of clones in the context of variable
systems such as software product lines.

References

[1] B. W. Kernighan, The C Programming Language,
2nd ed., D. M. Ritchie, Ed. Prentice Hall, 1988.

[2] M. Ernst, G. Badros, and D. Notkin, “An empirical
analysis of c preprocessor use,” IEEE Trans. Soft.
Eng., vol. 28, no. 12, pp. 1146 – 1170, Dec. 2002.

[3] B. Stroustrup, The Design and Evolution of C++.
New York, NY, USA: Addison-Wesley, 1995.

[4] J. Favre, “Understanding-in-the-large,” in Proc.of
the Int. Workshop on Program Comprehension.
IEEE Computer Society, 1997, pp. 29–38.

[5] H. Spencer and G. Collyer, “#ifdef considered
harmful, or portability experience with c news,” in
Proc. USENIX Tech. Conf. USENIX Association
Berkeley, 1992, pp. 185–197.

[6] J. Liebig, C. Kästner, and S. Apel, “Analyzing
the discipline of preprocessor annotations in 30
millions lines of c code,” in Proc. Int. Conf. on
Aspect-Oriented Software Development. ACM,
2011, to appear.

[7] C. Kästner, S. Apel, and M. Kuhlemann, “Granu-
larity in software product lines,” in Proc. Int. Conf.
on Software Engineering. ACM Press, 2008, pp.
311–320.

[8] C. Kästner, S. Apel, S. Trujillo, M. Kuhle-
mann, and D. Batory, “Guaranteeing syntac-
tic correctness for all product line variants: A
language-independent approach,” in Proc. Int.
Conf. on Objects, Models, Components and Pat-
terns. Springer-Verlag, 2009, pp. 175–194.

[9] C. Kästner and S. Apel, “Virtual separation of
concerns – a second chance for preprocessors,” J.
Obj. Tech. (JOT), vol. 8, no. 6, pp. 59–78, Sep.
2009, refereed Column.

[10] I. Baxter and M. Mehlich, “Preprocessor condi-
tional removal by simple partial evaluation,” in
Proc. of the Work. Conf. on Reverse Engineering.
IEEE Computer Society, 2001, pp. 281–291.

[11] B. S. Baker, “On Finding Duplication and Near-
Duplication in Large Software Systems,” in Proc.
of the Work. Conf. on Reverse Engineering. IEEE
Computer Society, 1995, pp. 86–95.

[12] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone Detection Using Abstract Syntax
Trees,” in Proc. of the Int. Conf. on Software
Maintenance. IEEE Computer Society, 1998, pp.
368–377.

[13] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,
“DECKARD: Scalable and Accurate Tree-based
Detection of Code Clones,” in Proc. Int. Conf. on
Software Engineering. IEEE Computer Society,
2007, pp. 96–105.

[14] E. Jürgens, F. Deissenboeck, B. Hummel, and
S. Wagner, “Do code clones matter?” in Proc. Int.
Conf. on Software Engineering. IEEE Computer
Society, 2009, pp. 485–495.

[15] B. Laguë, D. Proulx, J. Mayrand, E. Merlo, and
J. Hudepohl, “Assessing the benefits of incorpo-
rating function clone detection in a development
process,” in Proc. of the Int. Conf. on Software
Maintenance. IEEE Computer Society, 1997, pp.
314–321.

[16] L. Aversano, L. Cerulo, and M. Di Penta, “How
clones are maintained: An empirical study,” in
Proc. of the Eur. Conf. on Software Maintenance
and Reengineering. IEEE Computer Society,
2007, pp. 81–90.

[17] M. Kim, V. Sazawal, D. Notkin, and G. Murphy,
“An empirical study of code clone genealogies,” in

Proc. Eur. Soft. Eng. Conf./Int. Symp. on Founda-
tions of Soft. Eng. (ESEC/FSE). ACM, 2005, pp.
187–196.

[18] J. Mayrand, C. Leblanc, and E. Merlo, “Experi-
ment on the automatic detection of function clones
in a software system using metrics,” in Proc. of
the Int. Conf. on Software Maintenance. IEEE
Computer Society, 1996, pp. 244–253.

[19] C. Roy and J. Cordy, “Near-miss function clones in
open source software: An empirical study,” Journal
of Software Maintenance, vol. 22, no. 3, pp. 165–
189, 2010.

[20] H. Basit and S. Jarzabek, “A data mining ap-
proach for detecting higher-level clones in soft-
ware,” IEEE Trans. Soft. Eng., vol. 35, pp. 497–
514, 2009.

[21] C. Roy and J. Cordy, “A Survey on Software
Clone Detection Research,” School of Computing,
Queen’s University at Kingston, Tech. Rep. 2007-
451, 2007.

[22] S. Ducasse, M. Rieger, and S. Demeyer, “A lan-
guage independent approach for detecting dupli-
cated code,” in Proc. of the Int. Conf. on Software
Maintenance. IEEE Computer Society, 1999, pp.
109–118.

[23] T. Kamiya, S. Kusumoto, and K. Inoue,
“CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale
Source Code,” IEEE Trans. Soft. Eng., vol. 28,
no. 7, pp. 654–670, 2002.

[24] J. Krinke, “Identifying Similar Code with Program
Dependence Graphs,” in Proc. of the Work. Conf.
on Reverse Engineering. IEEE Computer Society,
2001, pp. 301–309.

[25] E. Jürgens, F. Deissenboeck, and B. Hummel,
“Clonedetective - a workbench for clone detection
research,” in Proc. Int. Conf. on Software Engi-
neering. IEEE Computer Society, 2009, pp. 603–
606.

[26] C. Prehofer, “Feature-Oriented Programming: A
Fresh Look at Objects,” in Proc. of the Eur.
Conf. on Object-Oriented Programming. Springer,
1997, pp. 419–443.

[27] P. Clements and L. Northrop, Software Product
Lines: Practices and Patterns. Addison Wesley,
2006.

[28] J. Maletic, M. Collard, and A. Marcus, “Source
code files as structured documents,” in Proc.of the
Int. Workshop on Program Comprehension. IEEE
Computer Society, 2002, pp. 289–292.

[29] T. Anderson and J. Finn, The New Statistical
Analysis of Data. Springer, 1996.

[30] L. Giventer, Statistical Analysis for Public Admin-
istration, 2nd ed. Jones and Bartlett Publishing,

2008.
[31] J. Liebig, S. Apel, C. Lengauer, C. Kästner,

and M. Schulze, “An analysis of the variabil-
ity in forty preprocessor-based software product
lines,” in Proc. Int. Conf. on Software Engineering.
ACM, 2010, pp. 105–114.

