
Utilizing Web Search Engines for Program Analysis

Daniel Ratiu
Technische Universität München

Germany
Email: ratiu@in.tum.de

Lars Heinemann
Technische Universität München

Germany
Email: lars.heinemann@in.tum.de

Abstract—Programming involves representing domain con-
cepts by using programming abstractions. In object-oriented
programs, concepts and relations of the business domain
are represented as classes, attributes and methods. However,
the concepts and relations that logically belong together are
scattered across different modules, interleaved with technical
concepts, and distorted due to implementation details. In this
paper, we present an automatic method to identify logically
related concepts and the relations among them. To achieve
this, we systematically transform program identifiers into
fragments of natural language sentences and check whether
these sentence fragments are meaningful for humans. In order
to automatically perform such checks, we use the World Wide
Web as a knowledge base that contains a huge number of
meaningful texts, and use the Google web search engine to
validate the meaningfulness of these sentences. If the search
engine returns a sufficient number of hits, we discovered a
piece of knowledge in the code. By systematically applying
this method, we obtain a condensed form of the knowledge
embodied in the program which is an enabler for automatic
analyses. We present our experience with several use-cases:
(1) assessing the meaningfulness of identifiers, (2) extracting
complex concepts from compound identifiers, (3) extracting
a meaningful taxonomy from the class hierarchy, and (4)
extracting complex conceptual relations from the code. We
report on our observations during the analysis of real world
Java code, discuss the limitations of our approach and sketch
extension possibilities.

Keywords-concept location, program analysis, analysis of
identifiers, domain knowledge

I. INTRODUCTION

Programming involves representing concepts of the busi-
ness domain in the code. Object-oriented programming
languages are advocated to better support the implementa-
tion of domain concepts by providing adequate abstraction
mechanisms [1], [2]. There is a widespread opinion among
practitioners that well structured programs should mirror the
structure of their business domain and should be easy to read
like natural language prose [3], [4], [5], [6].

In practice, the pieces of domain knowledge are usually
scattered across several modules—a phenomenon known
as delocalization [7]. In the code, the implementation of
domain concepts is interleaved with the implementation of
technical concepts. [8]. Furthermore, the domain knowledge
is distorted by the use of inappropriate programming con-
structs [9]. These facts make programs like puzzles: recon-

public abstract class Rectangle implements Cloneable, Shape {
 public float x, y;
 public float width, height;
 public Object clone() { … }
 public int hashcode() { … }
 public String toString() { … } …
}

Figure 1. Domain concepts are interleaved with technical details

structing parts of the domain knowledge implemented in the
program involves identifying the different program modules
that implement the concepts and how they fit together.
Thereby, concept location [10] and concept assignment [11]
are central problems for program understanding that are
notoriously difficult to automate.

In Figure 1, we present a code fragment taken from the
Java standard API that implements a very simple concept,
namely a “rectangle”. In this fragment, only half of the
words used to form identifiers refer to knowledge related to
rectangles – namely, “rectangle”, “x”, “y”, “shape”, “width”
and “height”. All other identifiers represent technical con-
cepts related to programming or to Java technologies. In
large programs, the situation is much more complex. The
distinction between those words contained in an identifier
that represent domain concepts and those that represent
implementation details is a challenging task that is hard to
automate.

In this paper, we propose an automatic approach for
identifying logically related concepts as well as the rela-
tions among them. Our approach can be described by the
following metaphor: Let’s imagine that a robot wants to
learn general knowledge that is implemented in a program
and that is meaningful for humans. Its approach (illustrated
in Figure 2) is to learn new facts about the program by
“reading aloud” fragments of the source code and waiting for
the response from a human audience. The audience decides
whether the read utterances make sense or not. For example,
the sentence “a rectangle is a shape” is meaningful, while “a
rectangle is a clonable” is not. Hopefully, somebody from the
audience recognizes the utterances as meaningful and tells
this to our robot. Whenever it gets positive feedback from the
audience, it identified a knowledge unit (called “knowledge

Source code

Makes sense Does not make sense

Utterances Generator

Feedback

“a rectangle is a shape”
“a rectangle is a cloneable”

Figure 2. A robot learns new facts about the domain of a program by
“reading aloud” the code and obtaining feedback from a human audience

quark”). In order to operationalize this metaphor we have
to answer the following two questions:

1) How do we read aloud the program? By reading
the program code as it is written (i. e. in a sequential
manner), there is a low probability that the human audience
recognizes concepts that logically belong together. There-
fore, our approach is to maximize the chance that humans
would recognize the utterances by transforming the code into
(fragments of) English sentences based on carefully chosen
heuristics.

2) Where do we find the patient audience? We need an
audience with human knowledge who is willing to give feed-
back about the meaningfulness of many sentence fragments.
In practice, the texts accessible on the Internet represent a
huge source of knowledge meaningful for humans. We use
these texts to play the role of the knowledge base of our
audience. We utilize the power of web search engines to
validate the utterances. Whenever the search engine returns
a certain number of hits, we conclude that the sentence
fragment is meaningful for humans.

Contributions and outline: In Section II, we present
several forward engineering guidelines for transforming nat-
ural language texts into object-oriented design and further
into programs. Section III represents the core of this paper,
describing a new method to extract fragments of domain
knowledge from programs (knowledge quarks) by transform-
ing program source code into fragments of natural language
sentences. In Section IV, we present several case-studies
on applying our program analysis approach to parts of the
Java standard API and an open source Java program. We
focus on several applications: (1) identifying the complex
concepts contained in compound identifiers, (2) identifying
unintuitively named classes, and (3) extracting complex
relations between concepts implemented in the code. In
Section V, we present a discussion of the limitations and
variability points of our approach. Related approaches for
analyzing code are presented in Section VI. We conclude the
paper and present our plans for future work in Section VII.

II. FROM NATURAL LANGUAGE TO PROGRAMS

In this section, we briefly present guidelines of object-
oriented modeling and design approaches for transforming

parts of the requirements written in natural language texts
into program abstractions during forward engineering.

In Section III, we present our approach to do the inverse
way and transform the source code into natural language
sentence fragments by starting from program abstractions.

Numerous software methods as well as design and devel-
opment books describe the process for the transition from
the knowledge about the business domain (as presented in
textual requirements) to the design [1], [2], [12], [13].

A pioneering work for program design, starting from
informal descriptions of a problem domain given in English,
dates as early as the beginning of the 1980s:

“Most striking is the parallel between the noun
phrases in the original and the data types and
program objects in the program. The bulk of
this article is a discussion of that correspondence
and of how to make the transformation between
noun phrases and data types and objects.” [13] (our
emphasis)

Object-oriented programming is supposed to intuitively
represent domain concepts in code. For example, in the
time of the advent of object-orientation, its promoters advo-
cated the naturalness and correspondence between domain
concepts as expressed in natural language and the object-
oriented code:

“Through the design activity, the structure of soft-
ware modules based on an object oriented model is
interactively extracted from the informal English
description. Each word such as nouns and verbs
in the natural-language sentences is associated
with a software concept, e.g. class, attribute, and
method.” [12] (our emphasis)

Another example is in the following:
“Many objects are there just for the picking. They
directly model objects of the physical reality to
which the software applies. [...] using software
object types (classes) to model physical object
types, and the method’s inter-object-type relations
[...] to model the relations that exist between
physical object types such as aggregation and
specialization.” [1] (our emphasis)

Considerable work has been done in forward engineering
that guides the extraction of object models from natural
language texts. However, the potential to help reverse en-
gineering by performing the backwards way, i.e. extracting
natural language texts from program code, is much less
investigated (to the best of our knowledge not at all).

We present a method for extracting domain knowledge
from code by recovering sentence fragments that could

have been used as an input for creating the code.

III. FROM PROGRAMS TO NATURAL LANGUAGE

Approach Overview: In Figure 3, we present an
overview of our approach and the basic components needed
to obtain semantic information from programs. The main
component of our toolkit is the semantic program interpreter.
It takes as an input a series of program facts (e. g. “class
Rectangle extends Shape”, “class Rectangle implements
Cloneable”) and a series of strategies for transforming these
facts into fragments of English sentences (e. g. “a ∇ is a
� that”). Using these two inputs, the interpreter generates
a series of fragments of natural language sentences (e. g.
“a rectangle is a shape that”, “a rectangle is a cloneable
that”) and uses them as inputs for a web search engine.
Depending on the number of hits returned by the web search
engine (i. e. the number of times that sentence fragment was
actually written by someone) the semantic interpreter finds a
new relevant fact about the program with a higher or lower
confidence. It might even reject that program fragment as not
implementing common knowledge known to humans. Once
identified, a knowledge fragment is saved into a knowledge
base.

Natural language
sentence templates

Source code

Web Search Engine
(e.g. Google)

Facts
extraction

Queries Answers

Semantic program
interpreter

Knowledge quarks

1

3 4

2

5

Figure 3. Overview of our approach

In Figure 4, we present a typical example of a program
fragment containing different pieces of knowledge about the
business domain (i. e. geometrical figures). In the following,
we will use this example to illustrate how we abstract from
program code, what sentence templates we choose, how we
systematically transform the code into sentence fragments
and how we perform queries.

class Rectangle implements Shape, Clonable {
 float currentWidth, currentHeight;
 void draw() { … }
 Object clone() { … } …
}
class GeometricalTransformationUtils {
 void rotate(Shape) { … } …
}

Figure 4. Typical program fragment example

In the following subsections we present each of the steps
of our approach in more detail:

A. Extracting facts from Java programs

The biggest part of Java programs and the most important
link to the domain knowledge implemented in the code is
made of the identifiers defined by programmers. Relations
between identifiers are defined by their corresponding pro-
gram elements. Thereby, we abstract programs as sets of
identifiers and relations between them.

Program We consider a program P to be a tuple

P = (I, R)

whereby I is the set of program identifiers and R is a set
of typed program relations between the program elements
corresponding to these identifiers. For the relations in R,
we choose the following types: hasSuperType, hasAttribute,
hasMethod, hasParameter with their obvious meanings.

Intuitively, we consider a program to be a graph whose
nodes are identifiers and whose edges are the relations
between the identifiers. In Figure 5, we present an example
of the program graph that corresponds to the code fragment
example from Figure 4. Each identifier can be formed of a
single word or of a sequence of words that are not lexically
normalized (e. g. we consider “rectangular”, “rectangle”,
“rectangles” to be distinct words even if they have the same
root).

Rectangle

Shape

currentHeightcurrentWidth

draw

superType

hasAttribute

hasMethod

rotatehasParameter

hasMethod

GeometricalTransformationUtils

Clonable

hasMethodclone

Figure 5. Example of the program graph

Identifier-to-words Given the set of identifiers I and the
set of words W , we define the function

i2w : I →W ∗

which transforms identifiers into a sequence of words.

Identifiers are split into parts according to the CamelCase
notation (e. g. “i2w(ArrayList) = 〈”Array”, ”List”〉),
or based on other common word delimiters like for
example underscores (e. g. i2w(current_element) =
〈”current”, ”element”〉). In order to eliminate the irrel-
evant words, we do not consider pronouns, prepositions,
conjunctions and words formed from only one letter.

B. Defining sentence templates

Sentence templates Let s1, s2, s3 be strings. We call a
string to be a well formed sentence pattern iff it has the
following form:

”s1 ∇ s2 � s3”

Intuitively, a string is a valid pattern if it has two place
holders (holes). The holes are denoted in the above formula
through ∇ and � and they will be filled with words extracted
from the program text. A sentence template is a basic
fragment of a natural language sentence that would convey
a certain information to its audience about the concepts
denoted by words that replace ∇ and �. For example, a
simple sentence template is:

”a ∇ is a � that”

Sentence fragment Let w, w′ ∈ W be two words, and p
a sentence template. We call a string s to be a sentence
fragment obtained from the template p iff:

s = p(∇ 7→ w, � 7→ w′)

Intuitively, a sentence fragment is obtained from a sen-
tence template by replacing the holes in the template (∇
and �) with words. An example of the instantiation of the
above sentence template into a sentence fragment would be:
“a rectangle is a shape that".

In each of the following paragraphs, we present sentence
templates that are targeted to cluster words that logically
belong together and to extract logical relations between
concepts.

1) Sentence templates for complex concepts: In natural
language, the concepts that are frequently used have words
attached to them. More complex concepts, that are more
special or less frequently used, are formed of sequences
of words. We call the latter complex concepts. They are
formed by joining together two words w1 and w2. Examples
of complex concepts are: “operating system”, “file system”,
“input stream” or “round rectangle”. In order to test whether
two words w1, w2 form a complex concept, we use the set
of patterns P1:

P1 = {"the ∇ � is", "a ∇ � is” }

whereby ∇ takes the place of the first word in the complex
word and � takes the place of the second word.

2) Sentence templates for taxonomical relations: An
important relation between concepts is the superordi-
nate/subordinate (is-a) relation. A simple sentence template
that conveys the taxonomical relation between two concepts
is:

P2 = {"a ∇ is a � that”}

whereby ∇ is the placeholder for the sub-concept and � is
the place holder for the super concept.

3) Sentence templates for “properties” or “parts”:
Another important class of relations between concepts is
the “property-of” or “part-of” relation (a.k.a. meronymy). In
natural language, we use the same sentence to convey the
information that a concept is a property or part of another
concept:

P3 = {"∇ of a �", "∇ of the �"}

whereby ∇ is the place holder for the property and � is the
place holder for the concept that bears that property.

4) Sentence templates for patients of actions: Actions
are described by using verbs in natural language. Actions
are performed on objects – e. g. the action “draw” can
be performed on “figures”. In natural language, a simple
sentence pattern that conveys the information that a concept
is an object upon which an action is performed is:

P4 = {"to ∇ a �"}

whereby ∇ is the placeholder for the action and � is
the placeholder for the object upon which the action is
performed.

C. Extracting facts

Voting function Let Templ be a set of strings forming
valid sentence templates. We define the function

vote : Templ ×Word×Word→ N (1)

whereas vote(t, w1, w2) returns the number of hits obtained
by performing a web search with the sentence t(∇ 7→
w1, � 7→ w2).

Fact extraction. Let w1, w2 ∈ W be two words, Patt a
set of well-formed sentence patterns, and let the function
extract be defined as follows:

extract : ℘(Patt)×W ×W → N,

extract(patt, w1, w2) = maxp∈patt(vote(p, w1, w2))

Intuitively, the extract function returns the maximum num-
ber of hits obtained from the search engine by successively
forming sentences from a given set of patterns.

In the following paragraphs, we use the patterns defined
in the previous sub-section to extract semantical information
from the code.

1) Interpreting compound identifiers: Compound identi-
fiers are identifiers made of several words. Some of these
words logically belong together and form complex concepts
and some are only implementation noise. Identifying the
complex concepts that are contained in compound identifiers
is a central issue in the analysis of identifiers.

For example, in the case of the identifier
“GeometricalTransformationUtils” we have
i2w(“GeometricalTransformationUtils′′) =
{”geometrical”, ”transformation”, ”utils”}. From these

three words, the words “geometrical” and “transformation”
belong together, whereas the word “utils” is only
implementation detail. We propose the following heuristic
for the identification of complex concepts:

Heuristic 1 (Complex concepts) Let i ∈ I be an identifier
whereas i2w(i) = {w1, ..., wn}, n > 1. We call the word
sequence ”wl wl+1”, 1 ≤ l < n the complex concept
contained in the identifier i iff

∀1 ≤ k < n, k 6= l :
extract(P1, wl, wl+1)) ≥ extract(P1, wk, wk+1)) > 0

Intuitively, the complex concept is formed by the two
words that return the highest number of hits when replaced
in the set of sentence fragments P1. In order to detect
the complex concept contained in the compound identifier
“GeometricalTransformationUtils” from the example above,
we query Google by using the following set of sentences:

"the geometrical transformation is"
"a geometrical transformation is"
"the transformation utils is"
"a transformation utils is"

As we would expect, each of the first two sentences makes
much more sense for the audience than the other two and
therefore we identified the complex concept “geometrical
transformation”. Once we identified a complex concept, we
add its name to the set of known words:

W ′ = W ∪ {”wl wl+1”}

In the subsequent analyses, we consider complex words by
splitting an identifier into words. We extend the function i2w
to a new version i2w

+:

i2w(“GeometricalTransformationUtils”) =
{“Geometrical”, “Transformation”, “Utils”}

i2w
+(“GeometricalTransformationUtils”) =

{“Geometrical Transformation”, “Utils”}

2) Interpreting the type hierarchy: In object-oriented
languages, we model the is-a relations between domain
concepts through the inheritance relations between their
corresponding classes (or interfaces). In our program ab-
straction, a fragment of the type hierarchy is given by an
edge in the program graph: “identifier1 - hasSuperType -
identifier2” whereby identifier1 is the name of the sub-
class and identifier2 is the name of the super-class. Many
times, words contained in these two identifiers reference
domain concepts that are in the sub-concept – super-concept
relation.

Heuristic 2 (Taxonomy) Let i, i′ ∈ I be two identifiers,
and (i1, hasSuperType, i2) ∈ R. The words w ∈ i2w

+(i),

w′ ∈ i2w
+(i′) represent concepts that belong to a taxonom-

ical relation iff:

extract(P2, w, w′) > 0

Intuitively, we identify a valid taxonomical relation between
the (complex) words of two identifiers representing the sub-
class and super-class iff, by performing the query using the
set of patterns P2, we obtain at least one hit for at least one
pattern. For example, from the code from Figure 4, we build
the following sentences

“a rectangle is a shape that”
“a rectangle is a clonable that”

As we would expect, only the first sentence fragment makes
sense for the audience (and thereby the extract function
returns a number bigger than 0), while the other inheritance
relation represents only implementation details and thereby
does not contain domain related information.

3) Interpreting the attributes: In object-oriented lan-
guages, classes and attributes are frequently used to model
the property or part relation between the concept imple-
mented through the class and the one implemented as the
attribute of that class. In our program abstraction, the relation
between classes and their attributes is given by the following
edge in the program graph: “identifier1 - hasAttribute -
identifier2” Below, we present a heuristic for extracting
the concepts and their properties.

Heuristic 3 (Parts and properties) Let i, i′ ∈ I be two
identifiers, and (i1, hasAttribute, i2) ∈ R. The words
w ∈ i2w

+(i), w′ ∈ i2w
+(i′) represent concepts among

which there is a “property” relation iff:

extract(P3, w, w′) > 0

Intuitively, we identify a valid concept and its properties iff
by performing the query using the set of patterns P3, we
obtain at least one hit for at least one pattern. For example,
from the code from Figure 4, we extract the following
sentence fragments:

“width of a rectangle” “width of the rectangle”
“height of a rectangle” “height of the rectangle”
“current of a rectangle” “current of the rectangle”

Here, only the first two sentence fragments are meaningful
for the audience.

4) Interpreting the methods: In object-oriented lan-
guages, methods are typically used to represent actions in
the system to be modeled. The objects on which these
actions are performed (i. e. the patients of the actions) are
implemented either as classes that contain the methods or as
parameters of the methods. Given the edges “identifier1 -
hasMethod - identifier2” or “ identifier1 - hasParameter
- identifier2” in the program graph, we use the following
heuristic to identify the actions and their objects:

Heuristic 4 (Objects of actions) Let i, i′ ∈ I be
two identifiers, and (i, hasMethod, i′) ∈ R or
(i′, hasParameter, i) ∈ R. The words w ∈ i2w

+(i),
w′ ∈ i2w

+(i′) represent concepts among which there is the
“actsOn” relation iff:

extract(P4, w
′, w) > 0

Intuitively, we identify a valid action and its object iff by
starting from a class and a method (or a method and its
parameter respectively) and performing the query using the
set of patterns P4 we obtain at least one hit. For example,
from the code from Figure 4, we form the following sentence
fragments:

“to draw a rectangle”
“to clone a rectangle”
“to rotate a shape”

As we would expect, we obtain hits only for the first and
third sentences.

IV. CASE-STUDIES

The central idea of our approach is that we can extract
knowledge quarks by systematically transforming parts of
the source code into fragments of natural language sen-
tences. If these sentences are meaningful for humans, we
identified a knowledge quark that is implemented in the
code. The meaningfulness of these sentences can be tested
by forming queries for a web search engine. This opera-
tionalization is based on two assumptions:

1) All texts indexed by Google are written by humans
and make sense for humans. In other words: If Google
returns a hit, the sentence fragment is meaningful.

2) Every meaningful sentence fragment that can be
formed with our templates was written by someone
in an electronic document that is indexed by Google.

The first assumption directly influences the precision of the
approach for extracting facts from the code while the second
assumption directly influences the recall. In our experiments,
we only evaluated the precision.

Experimental setup: In order to perform the experi-
ments, we chose to analyze different parts of the Java 1.5
standard API (i. e. the Collections API and the I/O API from
the package java.io) and JHotDraw 5.4b11, a framework
for drawing. The reason for this choice is that the Java
Collections API implements data structures that represent
one of the most well-understood and normed set of concepts
in computer science. The I/O API implements a well-defined
but larger set of concepts, and we consider JHotDraw to be
a general purpose program. The version of the Collections
API that we analyzed has 35 classes, the I/O API has 83
classes, and JHotDraw has 268 classes.

1http://www.jhotdraw.org/

We evaluate the feasibility of our approach for a set of
use-cases that are closely related to the knowledge quarks
that we extract from the code. Each of the following sub-
sections is centered around a specific analysis use-case.

A. Interpreting compound identifiers

One of the most direct uses of our knowledge extraction
framework is to interpret compound identifiers and to extract
the complex concepts that are described by words that
logically belong together.

Extracting complex concepts: In Figure 6, we present
a list with the complex concepts that we automatically
extracted from the classes, attributes and methods of the Java
Collections framework. We extracted 65 complex concepts,
out of which 7 represent false positives (these concepts
are underlined in the figure and represent implementation
decisions rather than concepts about data structures).

Complex concepts from the “collections” class names: linked list, random access, array
list, priority queue, tree set, sub list, list iterator, tree map, hash map, sorted set, sequential list,
abstract set, enum set, hash set, sorted map, abstract list, abstract collection, abstract map,
abstract queue

Complex concepts from the “collections” method names: null value, binary search, valid
key, non null, hash code, tree set, key index, red level, sub list, hash map, sorted set,
sequential list, preceding entry, search null, hash set, sorted map, eldest entry, all elements,
value iterator, more elements, stale entries, ceil entry, key iterator, entry iterator

Complex concepts from the “collections” attributes names: element type, empty list,
reverse order, empty set, key set, key type, maximum capacity, load factor, zero length, serial
version, entry set, element data, initial capacity, access order, empty map, minimum capacity,
null key, element count, empty iterator, capacity increment, default capacity, empty enumerator

Figure 6. The complex concepts of the Java Collections API

The complex concepts have a high importance and raise
the level of discourse at which a piece of software is
analyzed – it is qualitatively different to regard the individual
words “list”, “array”, “sub”, “linked” or to say “array list”,
“sub list” or “linked list”. Furthermore, complex words
have a much lower ambiguity (polysemy) degree and can
therefore be used directly for string-based concept location.

In the case of java.io, our tool automatically identified
188 complex concepts. An example of a complex concept
is “file system” – the words “file” and “system” were
found as a compound over nine million times. After their
manual investigation, we identified that 43 (i. e. 23%) do
not make sense. In the case of JHotDraw, our tool extracted
520 complex concepts; after their manual investigation, we
identified that 75 (i. e. 14%) combinations of words do
not make sense. We conclude that our method has a high
precision for the extraction of complex concepts.

Assigning dominant complex concepts to compound
class identifiers: In the following, we present a related use-
case, namely the automatic assignment of dominant complex
concepts to identifiers that contain more than two words.
Due to space limitations, we present the exact assignment
of complex concepts only for the classes from the Java

Collections API. In Figure 7, we present the interpretation
of class names with compound identifiers containing at least
three words. The figure contains four columns: the leftmost
column contains the name of the class, the second column
contains the sentence pattern that was used for the Google
query, the third column contains the number of hits returned
by Google, and the rightmost column contains the identified
complex concept. We remark that in the first case, our tool
identified that “random access” is a more important concept
that “sub list” – we consider this situation to be flawed.

class RandomAccessSubList
class LinkedHashMap
class WeakHashMap
class IdentityHashMap
class AbstractSequentialList
class LinkedHashSet

a random access that
a hash map that
a hash map that
a hash map that
a sequential list that
a hash set that

202000
162000
162000
162000
47000
21200

 random access
 hash map
 hash map
 hash map
 sequential list
 hash set

Program fragment Sentence fragment #Hits Concept

Figure 7. The complex concepts assigned to class names from the
collections API

In case of the Java Collections API and JHotDraw, the
manual inspection of the results showed that over 90%
of the compound identifiers of class names were assigned
correctly to complex concepts.

Identifying unintuitively named classes: In this use-
case, we investigated the identification of classes whose
names do not reflect common concepts. They are good
candidates to be considered for choosing a more intuitive
name. In the case of classes whose names are compound
identifiers formed from two words, we would expect that
these words were used together many times – this would
show that the words logically belong together. In Figure 8,
we present the class names, consisting of two words, to
which no complex concept could be assigned.

“java.io” classes with unintuitive names: PipedReader, PipedWriter, SerializablePermission

JHotDraw classes with unintuitive names: AutoscrollHelper, AWTCursor, DesktopListener,
DNDHelper, EastHandle, FigureEnumeration, FigureEnumerator, GridConstrainer,
HandleEnumeration, HandleEnumerator, HTMLLayouter, PeripheralLocator, PointConstrainer,
RelativeLocator, ScalingGraphics, SetWrapper, StandardLayouter, StorableInput,
StorableOutput, UndoableAdapter, UndoableHandle, UndoableTool, VersionRequester,
WestHandle

Figure 8. Classes with names consisting of two words that could not be
assigned to complex concepts

By manually inspecting the classes PipedReader and
PipedWriter from Java IO, we remarked that the programmer
documentation (JavaDoc) talks about streams (Figure 9).
However, the Input/OutputStream class hierarchies are com-
plementary to those of Reader/Writer. The former works on
byte arrays whereas the latter on character arrays. This fact
is not reflected in the name of the classes.

In the case of the third class, the word “serializable”
represents an implementation detail, and in this case its name
is well chosen.

package java.io;
...
/**
 * Piped character-output streams. ...
 */
class PipedWriter extends Writer {
 …

package java.io;
...
/**
 * Piped character-input streams. ...
 */
class PipedReader extends Reader {
 …

Figure 9. Excerpt of the Javadoc for the classes PipedWriter and
PipedReader

In the case of many classes from JHotDraw (Figure 8 -
down) we remark that their names contain a word referring
to a technical concept (e. g. “enumeration”, “awt”, “listener”)
and another word referencing a concept related to figures.
There are however classes that refer to unusual concepts
(e. g. “PointConstrainer”, “UndoableTool”). These classes
represent false positives, i. e. valid concepts that make sense
for humans from the point of view of the JHotDraw domain
knowledge. In Figure 10, we present an example of a class
from JHotDraw whose name could not be assigned to a
concept by using our method. By taking a closer look
at the JavaDoc, we remark that a better name would be
“ScalableGraphicsContext”.

package CH.ifa.draw.contrib.zoom; ...
/**
 * A graphics context that can scale to an arbitrary factor.
 */
class ScalingGraphics extends … { …

Figure 10. Example of a JHotDraw class with an unintuitive name

B. Extracting the intended taxonomical relations from the
class hierarchy

In Figure 11, we present the extracted taxonomical re-
lations from the class hierarchy of the Java Collections
framework and JHotDraw. In both cases, the situations when
we received only one hit from Google represent noise. We
obtained the most important relations between the concepts
of the Java Collections API. These are presented in Figure 6.
However, some concepts from the taxonomy are missing,
e. g. : “tree set”, “array list”. The cause for these omissions is
the fact that Google does not index any document containing
the text “an array list is a list that” or “a tree set is a set
that”. In case of Java IO, our method could not extract any
taxonomical relation.

C. Extracting properties of concepts

We extracted the concepts and properties from the Col-
lections API which contains 109 “class–attribute” relations.
The tool automatically extracted 31 relations. After their
manual inspection, we found that 19 (61%) relations are
indeed meaningful (presented in Figure 12-left-up). In the
same figure, below the line, we present several examples
of relations that do not make sense – these results were

 Set – isA – Collection
 Queue – isA – Collection
 List – isA – Collection
 Sorted Set – isA – Set
 Linked List – isA – List
 Hashtable – isA – Dictionary
 Hash Set – isA – Set
 Sorted Map – isA – Map
 Vector – isA – List
 Stack – isA – Vector
 Hash Map – isA – Map
 Abstract Map – isA – Map

Taxonomy from Java Coll.
 Polygon – isA – Figure
 Triangle – isA – Figure
 Event – isA – Event Object
 Ellipse – isA – Figure
 Connection – isA – Figure
 Composite Figure –isA– Figure
 Rectangle – isA – Figure
 Command Button –isA– Button
 View – isA – Component
 Triangle –isA– Geometric Figure
 Polygon –isA– Geometric Figure
 Ellipse – isA – Geometric Figure

Taxonomy from JHotDraw
 Command – isA – Item
 Menu Item –isA– Command
 Selection Tool – isA – Tool
 Component – isA – Figure
 Mini Map –isA– Component
 Tracker – isA – Tool
 Null Handle – isA – Handle
 Check Box – isA – Item
 Creation Tool – isA – Tool
 Action Tool – isA – Tool

Figure 11. Extracted taxonomies

obtained by finding the sentence fragments that are parts
of longer sentences (e. g. there is a web page containing
the fragment “size of the weak link” and thereby the tool
mistakenly identified that size is a property of weak).

In case of the IO API, we analyzed 326 “class – attribute”
relations. The tool automatically extracted 118 “hasProp-
erty” relations. The manual inspection revealed that 58
(49%) of the relations are meaningful.

D. Extracting actions and their objects

In case of the Collections API, we investigated 1070
relations between classes and methods (“hasMethod” edges
in the program graph) and between methods and their
parameters (“hasParameter” edges). The tool automatically
identified 107 “actsOn” relations. The manual inspection
revealed that 70 (65%) of these relations are meaningful.
In Figure 12-right, we present examples of good relations
(upper part) and bad relations (lower part). We remark that
in the case of good relations, even if they are meaningful,
some of them do not reflect the intended meaning in the
code (e. g. “Hashtable” is usually not an object of the action
“put”, but rather its doer. In other words, instead of “Put
– actsOn – Hashtable” we should rather have “Hashtable –
isDoer – Put”).

In case of the IO API, we analyzed 1300 “hasMethod”
and “hasParameter” edges of the program graph, and the tool
extracted 188 “actsOn” relations. The manual investigation
revealed that 90 (48%) make sense from the point of view
of the IO knowledge.

In the case of the analysis of actions and their objects,
we have the same source of noise as presented above,
namely that the searched fragments represent pieces of
already existing sentences. For example, our tool identified
the relation “is – actsOn – collection”, since the web
pages found by Google contain the sentence fragment “to
is a collection” which is meaningless per se. The manual
investigation revealed that such pages refer to completely
other concepts and that they contain text like “This How
To is a collection of important steps”. Another source of
noise is the fact that, in case of many words, the instantiation
of the sentence templates provide sentence fragments that do

not have a self contained meaning. For example, we wrongly
identified the relation “read – actsOn – random” since the
sentence fragment “to read a random” occurs on the Internet
as sub-sentence of other fragments like for example “"to read
a random access file", or “to read a random bit”.

 Array List – hasProp – Size
 Collections – hasProp – Copy
 Hash Map – hasProp – Initial Capacity
 Hash Map – hasProp ­­ Load Factor
 Hash Map – hasProp ­­ Size
 Hashtable – hasProp – Entries
 Hashtable – hasProp – Keys
 Hashtable – hasProp – Load Factor
 Hashtable – hasProp – Values
 Linked List – hasProp – Header
 Linked List – hasProp – Size
 Map – hasProp – Array
 Map – hasProp – Key
 Map – hasProp – Key type
 Map – hasProp – Size
 Map – hasProp – Universe
 Map – hasProp – Vals
 Priority Queue – hasProp – Initial Capacity
 Priority Queue – hasProp – Size
 Vector – hasProp – Element Count
 Vector – hasProp – Element Data

Properties from Java Collections Actions and objects from Java Collections

 Weak – hasProp – Size
 Weak – hasProp – Threshold
 Linked – hasProp – Header

 Add – actsOn – Collection
 Clear – actsOn – Collection
 Contains – actsOn – Collection
 Empty – actsOn – Collection
 Remove – actsOn – Collection
 Retain – actsOn – Collection
 Empty – actsOn – Dictionary
 Put – actsOn – Dictionary
 Remove – actsOn – Dictionary
 Add – actsOn – Enum Set
 Copy – actsOn – Enum Set
 Create – actsOn – Hash Map
 Put – actsOn – Hashtable
 Remove – actsOn – Index
 Push – actsOn – Item
 Remove – actsOn – Iterator
 Map – actsOn – Key
 Mask – actsOn – Key
 Remove – actsOn – Key
 Add – actsOn – Linked List
 Clear – actsOn – Linked List

 Is – actsOn – Collection
 Clone – actsOn ­­ Identity
 Create – actsOn ­­ Identity

Figure 12. Extracted properties (left) and actions (right) from Java
Collections

V. DISCUSSION

1) On the fundamental limitations of our approach: The
most important limitation is that programs contain knowl-
edge besides the one that can be expressed through simple
sentence templates. For example, none of our templates cap-
tures complex causality relations, behavioral dependencies
between different domain concepts, or other complex rela-
tions. Such knowledge is neither captured by our program
abstraction (i. e. identifiers and relations among them) nor is
it expressible through the sentence templates that we used.
Therefore, the use of our method cannot extract the whole
knowledge that is implemented in the code but only a subset
thereof.

2) On the limitation of using pre-defined templates:
We assume that we have a large enough basis of common
knowledge, available as natural language texts, and that
the knowledge is expressed through our defined patterns.
Even if the results of our case-studies suggest that many
times this is the case, we also discovered considerably
many cases when a certain knowledge quark, even if it
is contained in the WWW, it is not available in the pre-
defined sentence patterns. We also remarked that the results
are highly sensitive with respect to the exact string we use
for query. For example, the query “key set of a hashtable”
returned no hit (at the date we performed the query, namely

19.02.2010) while the query “key set of the hashtable”
returns several hits. Therefore, to obtain a high recall, we
need to use a more extended set of sentence patterns with
different slight variations.

Our set of heuristics is not comprehensive and should
be extended with more templates for relations or even with
new templates that capture other logical relations among
implemented concepts. We foresee that this can be a fruitful
research direction at the intersection between linguistics and
reverse engineering.

Another limitation is that we often obtain ambiguous
results (as we explained in detail in Section IV-C and IV-D).
A possible solution is to define more restrictive patterns –
however, in these cases we would lower the recall.

3) On the particularities of the Google search engine:
Besides the limitations due to the knowledge kinds that we
address and due to the pre-defined patterns (which generate
false negatives), there are limitations due to the use of the
Google search engine. For example, Google removes the
punctuation marks when performing the queries. This fact
generates unexpected results – e. g. the query “to read a
child” can return a web page containing the following text:
“ ... I urged him to read. A child just came in ...” which is
clearly not the intended meaning of the search query. This
leads to false positives.

We assumed that the higher the number of hits returned
by Google, the more frequent the sentence fragment occurs
in the World Wide Web and thereby the more relevant
the extracted fact. Even if this proves to be true in most
cases, (e. g. “file name” or “linked list” return many hits)
there are however exceptions since the number of hits
returned by Google following a certain query is only a
rough approximation of how many times a certain text is
really written in the web-pages. However, the use of different
threshold values and their influence on the precision and
recall is a subject of further investigations.

4) On the ambiguous nature of the natural language:
Natural language words are ambiguous since they exhibit
synonymy and polysemy. By searching for sentence parts,
we restrict the ambiguity to a great degree. However, by
using only simple sentence fragments we cannot eliminate
the semantic ambiguity completely – e. g. when analyzing
the program fragment “class Button extends Component”,
we extracted the sentence “a button is a component”, and,
as expected, Google returns many hits. Among these hits,
there are also irrelevant documents that contain (by chance)
the same text that refers to completely other concepts –
e. g. “a button is a component of the electrical plan of the
pumping station”. These situations generate false positives
since they obviously do not correspond to the intended
meaning of the concepts implemented in the code.

5) On using other textual resources: In our experiments,
we made use of Google searches on the whole World Wide
Web. For this purpose we obtained a grant from Google that

allows us to programmatically perform queries. However,
even without access to Google, there are other Internet
resources that could be used as huge textual bases. An
example would be to use the freely available electronic
encyclopedia Wikipedia2 as a text basis on which searches
can be performed (the archive with Wikipedia can be down-
loaded and installed locally on a computer with appropriate
resources). Furthermore, by performing scoped searches (i. e.
by taking into account only certain web pages like those that
have a proven quality), we can increase the accuracy (with
the danger to lower the recall).

6) On using manual inspections for evaluation: We used
our subjective judgement for evaluating the meaningfulness
of the extracted facts. Therefore the result of the manual
inspections might be biased.

VI. RELATED WORK

To the best of our knowledge, there is currently no other
reverse engineering approach that extracts facts from the
code by transforming the code into natural language sen-
tences and testing their meaningfulness. There are however
different other related areas as presented below:

Concept location and concept assignment: Concept
location [10] and concept assignment [11] are two central
problems for program understanding. According to Bigger-
staff et al., concept assignment can be split into “program-
ming oriented concepts” and “human oriented concepts”, the
latter being more challenging to recognize in programs. The
tasks required for the assignment of human oriented concepts
are “1. identify which entities and relations out of the over-
whelming numbers in a large program are really important;
2. assign them to [...] domain concepts and relations”[11].
Our work is nothing else than an operationalization of these
tasks: we define the sentence templates to reflect the most
likely relations between the implemented concepts and use
the web search engine queries to identify which of these
concepts are logically related and which relations make
sense. Generally, the method presented in this paper extends
the string matching methods for locating concepts with a
more complex interpretation of the code.

Interpreting compound identifiers at semantical level:
The linguistic content of compound identifiers was analyzed
by [14] in the case of class names and by [15] in the case of
function names. In the guidelines for good naming of classes
developed by [14], the noun-noun compounds play a central
role. Our experiments confirmed this fact, as many of the
complex concepts are formed of two nouns. However, we
discovered that a considerable number of complex concepts
have the form adjective – noun (e. g. “sub list”, “sequential
list”).

[15] analyze the structure of function identifiers and devel-
oped a sophisticated grammar representing the composition
of function identifiers.

2www.wikipedia.org

We advance with respect to this work by interpreting
the compound identifiers from a semantic point of view.
Our approach can also be used to automatically test to
what extent the compound class and function names respect
identifier forming guidelines.

Using domain knowledge for program analysis: This
paper is in-line with our previous line of research about
interpreting code from the point of view of domain knowl-
edge that it implements and using domain knowledge for
program analysis [16]. Instead of mapping programs on
ontologies, as we did in our previous work [17], we take a
new approach and map program fragments on web resources
that they are likely to implement. In the current work, the
semantic domain is represented by the natural language texts
available on the Internet and the interpretation function is
the link between the program fragments and the web pages
that contain the same domain knowledge. We consider these
approaches to be complementary. Furthermore, the use of
web search engines for extracting domain knowledge can
help in the construction of an initial version of the domain
ontology for a program, which can subsequently be used in
further analyses.

VII. CONCLUSIONS AND FUTURE WORK

Our experiments show that it is feasible to transform
code into fragments of natural language sentences and use
web search engines to validate their meaningfulness. Our
approach can therefore be used to extract logical information
from programs.

Having a method to interpret the identifiers at the semantic
level is not our ultimate goal. We rather regard our method as
an enabler for enhancing other program understanding activ-
ities. We presented our experience with performing logical
analyses, including: interpretation of compound identifiers,
identification of unintuitive naming, and recovery of logical
relations between concepts implemented in the code.

A direction for future work is to improve the precision
and recall of the extraction of concepts by defining other
sentence templates (e. g. based on other program relations)
or refining the current ones. Another direction is to further
investigate how the approach can help typical program
comprehension tasks and to define logical analyses at the
code level based on the recovered knowledge.

VIII. ACKNOWLEDGMENTS

This research draws on data provided by the University
Research Program for Google Search, a service provided by
Google to promote a greater common understanding of the
web.

REFERENCES

[1] B. Meyer, Object-Oriented Software Construction, 2nd ed.
Prentice Hall PTR, March 2000.

[2] G. Booch, Object-Oriented Analysis and Design with Appli-
cations (3rd Edition). Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 2004.

[3] B. Venners, “Think of Objects as Machines,”
Artima Developer, http://www.artima.com/, 2003. [Online].
Available: http://www.artima.com/objectdesign/machine.html

[4] M. Henning, “Api design matters,” ACM Queue, vol. 5, no. 4,
pp. 24–36, May/June 2007.

[5] J. Bloch, “How to design a good api and why it matters,” in
Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications
(OOPSLA’06). New York, NY, USA: ACM Press, 2006, pp.
506–507.

[6] E. Evans, Domain-Driven Design: Tacking Complexity In the
Heart of Software. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[7] S. Letovsky and E. Soloway, “Delocalized plans and program
comprehension,” IEEE Software, vol. 3, no. 3, pp. 41–49,
1986.

[8] S. Rugaber, K. Stirewalt, and L. M. Wills, “The interleaving
problem in program understanding,” in Proceedings of the
3rd Working Conference on Reverse Engineering (WCRE’95),
1995.

[9] D. Ratiu and F. Deissenboeck, “From reality to programs
and (not quite) back again,” in Proceedings of the 15th
International Conference on Program Comprehension (ICPC
’07), 2007.

[10] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Proceedings of the 10 th International
Workshop on Program Comprehension (IWPC’02), 2002.

[11] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The
concept assignment problem in program understanding,” in
Proceedings of the 15th International Conference on Software
Engineering (ICSE ’93). IEEE CS, 1993, pp. 482–498.

[12] M. Saeki, H. Horai, and H. Enomoto, “Software development
process from natural language specification,” in Proceedings
of the 11th International Conference on Software Engineering
(ICSE ’89). New York, NY, USA: ACM, 1989, pp. 64–73.

[13] R. J. Abbott, “Program design by informal english descrip-
tions,” Communications of the ACM, vol. 26, no. 11, pp. 882–
894, 1983.

[14] F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Software Quality Journal, vol. 14, no. 3, pp. 261–
282, September 2006.

[15] B. Caprile and P. Tonella, “Nomen est omen: Analyzing the
language of function identifiers,” in Proceedings of the 6th
Working Conference on Reverse Engineering (WCRE ’99),
1999, pp. 112–122.

[16] D. Ratiu, “Intentional meaning of programs,” Ph.D. disserta-
tion, Technische Universität München, submitted Feb 2009.

[17] D. Ratiu and F. Deissenboeck, “Programs are knowledge
bases,” in Proceedings of the 14th International Conference
on Program Comprehension (ICPC ’06), 2006.

