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Abstract—Although numerous different clone detection ap-
proaches have been proposed to date, not a single one is both
incremental and scalable to very large code bases. They thus
cannot provide real-time cloning information for clone manage-
ment of very large systems. We present a novel, index-based
clone detection algorithm for type 1 and 2 clones that is both
incremental and scalable. It enables a new generation of clone
management tools that provide real-time cloning information for
very large software. We report on several case studies that show
both its suitability for real-time clone detection and its scalability:
on 42 MLOC of Eclipse code, average time to retrieve all clones
for a file was below 1 second; on 100 machines, detection of all
clones in 73 MLOC was completed in 36 minutes.

I. INTRODUCTION

Research in software maintenance has shown that many
programs contain a significant amount of duplicated (cloned)
code. Such cloned code can be problematic for two reasons:
(1) multiple, possibly unnecessary, duplicates of code increase
maintenance costs [1], [2] and, (2) inconsistent changes to
cloned code can create faults and, hence, lead to incorrect
program behavior [3], [4].

In response, a large number of clone detection approaches
have been proposed that can uncover duplication in large
scale software systems [1], [2], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17], [18]. Their results
are employed by clone visualization and management tools
[19], [20], [21], [22], [23], [24], [25] to alleviate the negative
consequences of cloning during maintenance of software that
contains duplication. Clone management tools rely on accurate
cloning information to indicate cloning relationships in the
IDE while developers maintain code. To remain useful, cloning
information must be updated continuously as the software sys-
tem under development evolves. For this, detection algorithms
need to be able to very rapidly adapt results to changing code,
even for very large code bases.

Unfortunately, most existing clone detection algorithms are
not sufficiently scalable and do not work incrementally but
instead operate in batch mode, i.e., they read the entire
software system and detect all clones in a single step. When
the system changes, the entire detection has to be performed
again. This holds independently of the program representation
they operate on and the search algorithm they employ.

If used for clone management, batch algorithms either have
to be executed on-demand, or clone management has to use
pre-computed results that are updated on a regular, e.g., daily,

basis. Both approaches cause substantial accidental complex-
ity: on demand execution causes waiting times; pre-computed
results can be outdated, causing invalid decisions or edits. This
reduces the payoff achievable through the application of clone
management tools and threatens their adoption by industry.
The bigger the maintained code base—and thus the larger
the need for automation of clone management—the greater
the incurred accidental complexity, as clone detection times
increase. Unfortunately, novel incremental clone detection
approaches come at the cost of scalability, and vice versa.
They hence do not improve clone management.

Problem: Current clone detection approaches are either not
incremental or not scalable to very large code bases. Hence,
they cannot be used for real-time detection in large systems,
reducing their usefulness for clone management.

Contribution: This paper presents index-based clone detec-
tion as a novel clone detection approach that is both incremen-
tal and scalable to very large code bases. It extends practical
applicability of clone detection to areas that were previously
unfeasible since the systems were too large or since response
times were unacceptably long. We outline several case studies
that show the scalability of index-based clone detection to very
large code bases and demonstrate that incremental updates and
response times are sufficiently fast for clone management of
very large software. The tool support presented in this paper
is available as open source1.

II. STATE OF THE ART

The first part of this section introduces use cases that
demonstrate the need for scalable and incremental clone
detection algorithms. The second part outlines existing work
in this area and discusses its shortcomings.

A. Application of Clone Detection

Clone detection is employed for various use cases that
impose different requirements on the employed algorithms.

Evolving source code: To alleviate the negative conse-
quences of cloning in existing software, clone management
tools employ cloning information to guide maintenance ac-
tivities [19], [20], [21], [22]. A typical application is change
propagation support: developers are informed that the change

1http://www.conqat.org/



they are currently performing is in cloned code and should
possibly be applied to the clones as well. Since empirical
studies have demonstrated that unintentionally inconsistent
updates to cloned code often represent faults [3], such tools
promise to reduce the number of cloning-related bugs. The
leverage they can provide, however, depends heavily on the
accuracy of the cloning information they operate on. As the
software evolves, so do its contained clones. Consequently,
cloning information needs to be updated continuously to
remain accurate.

For large systems, rerunning detection on the entire system
after each change is prohibitively expensive. Instead, clone
management computes cloning information on a regular basis,
e.g., during a nightly build. Unfortunately, it quickly becomes
out-dated once a developer changes code. With out-dated
information, however, clone management tools cannot leverage
their full value: clone positions can have changed, causing
effort for their manual location; new clones might be missing
and thus escape management.

To avoid such accidental complexity, clone detection al-
gorithms need to be able to very quickly adapt cloning
information to changes in the source code.

Very large code bases: For several use cases, clone detec-
tion is not employed on a single system, but on families of
systems, increasing the size of the analyzed code.

Cross-product cloning analysis is used across a company’s
product portfolio, across a software ecosystem or for software
product lines, to discover reusable code fragments that are
candidates for consolidation [26]. For large products, the
overall code size can be substantial. Microsoft Windows Vista,
e.g., comprises 50 MLOC [27].

To discover copyright infringement or license violations,
clone detection is employed to discover duplication between
the code base maintained by a company and a collection of
open source projects or software from other parties[10], [28].
To provide comprehensive results, different versions of the
individual projects might need to be included, resulting in
code bases that can easily exceed several hundred MLOC.
For these use cases, clone detection algorithms need to scale
to very large code bases.

Summary: The above use cases make two important require-
ments for clone detection apparent: a) incremental detection
to be able to quickly adapt cloning information to changing
source code and b) scalability to large code bases. Ideally, a
single algorithm should support both, in order to be applicable
to clone management of large code bases.

B. Existing Clone Detection Approaches

A multitude of clone detection approaches have been pro-
posed. They differ in the program representation they operate
on and in the search algorithms they employ to identify
similar code fragments. Independent of whether they operate
on text [7], [11], [15], tokens [5], [10], [16], ASTs [6],
[12], [14] or program dependence graphs [9], [8], and in-
dependent of whether they employ textual differencing [11],

[15], suffix-trees [5], [10], [16], subtree hashing [6], [14],
anti-unification[29], frequent itemset mining [13], slicing [8],
isomorphic subgraph search [9] or a combination of different
phases [30], they operate in batch mode: the entire system is
processed in a single step by a single machine.

The scalability of these approaches is limited by the amount
of resources available on a single machine. The upper size
limit on the amount of code that can be processed varies
between approaches, but is insufficient for very large code
bases. Furthermore, if the analyzed source code changes,
batch approaches require the entire detection to be rerun to
achieve up-to-date results. Hence, these approaches are neither
incremental nor sufficiently scalable.

Incremental or real-time detection: Göde and Koschke [17]
proposed the first incremental clone detection approach. They
employ a generalized suffix-tree that can be updated efficiently
when the source code changes. The amount of effort required
for the update only depends on the size of the change, not the
size of the code base. Unfortunately, generalized suffix-trees
require substantially more memory than read-only suffix-trees,
since they require additional links that are traversed during the
update operations. Since generalized suffix-trees are not easily
distributed across different machines, the memory require-
ments represent the bottleneck w.r.t. scalability. Consequently,
the improvement in incremental detection comes at the cost
of substantially reduced scalability.

Yamashina et al. [31] propose a tool called SHINOBI that
provides real-time cloning information to developers inside the
IDE. Instead of performing clone detection on demand (and
incurring waiting times for developers), SHINOBI maintains a
suffix-array on a server from which cloning information for a
file opened by a developer can be retrieved efficiently. Unfor-
tunately, the authors do not approach suffix-array maintenance
in their work. Real-time cloning information hence appears to
be limited to an immutable snapshot of the software. We thus
have no indication that their approach works incrementally.

Nguyen et al. [32] present an AST-based incremental ap-
proach that computes characteristic vectors for all subtrees
of the AST for a file. Clones are detected by searching for
similar vectors. If the analyzed software changes, vectors for
modified files are simply recomputed. As the algorithm is
not distributed, its scalability is limited by the amount of
memory available on a single machine. A related approach that
also employs AST subtree hashing is proposed by Chilowicz
et al. [33]. Both approaches require parsers that are, unfor-
tunately, hard to obtain for legacy languages such as PL/I or
COBOL [34]. However, such systems often contain substantial
amounts of cloning [3]—making clone management for them
especially relevant. Instead, our approach does not require a
parser.

Scalable detection: Livieri et al. [35] propose a general
distribution model that distributes clone detection across many
machines to improve scalability. Their distribution model
essentially partitions source code into pieces small enough
(e.g., 15 MB) to be analyzed on a single machine. Clone



detection is then performed on all pairs of pieces. Different
pairs can be analyzed on different machines. Finally, results
for individual pairs are composed into a single result for the
entire code base. Since the number of pairs of pieces increases
quadratically with system size, the analysis time for large
systems is substantial. The increase in scalability thus comes
at the cost of computation time.

Summary: Batch-mode clone detection is not incremental.
The limited memory available on a single machine furthermore
restricts its scalability. Novel incremental detection approaches
come at the cost of scalability, and vice versa. In a nutshell,
no existing approach is both incremental and scalable to very
large code bases.

III. INDEX-BASED CODE CLONE DETECTION

This section introduces index-based clone detection as a
novel detection approach for type 1 and 2 clones2 that is both
incremental and scalable to very large code bases.

A. Architecture

In this section, we outline the architecture of the proposed
index-based clone detection approach and point out where
its components and their responsibilities differ from existing
approaches.

Clone detection pipeline: Clone detection comprises several
phases that are executed in a pipeline fashion, where each
phase builds on the results of the previous phase. In our clone
detection tool ConQAT [16], this architecture is made explicit
through a visual data flow language that is used to configure
the clone detection pipeline. From a high level perspective,
we differentiate three phases, namely preprocessing, detection
and postprocessing:

Preprocessing reads code from disk and splits it into tokens.
Normalization is performed on the tokens to remove subtle
differences, such as different comments or variable names.
Normalization impacts both precision and recall of the clone
detection results. Normalized tokens are then grouped into
statements. The result of preprocessing is a list of normalized
statements3 for each file.

Detection searches the global statement list for equal sub-
strings. The result of detection is hence cloning information
on the level of statement sequences.

Postprocessing creates cloning information on the level
of code regions from cloning information on the level of
normalized statements. Furthermore, depending on the clone
detection use case, detected clones can be filtered, presented
in a project dashboard or written to a report for interactive
analysis in an IDE or for use by clone management tools.

2Type 1 and 2 clones can differ in whitespace, commentation, identifier
names and constant values [1].

3Clone detection can work on a list of tokens as well, but working on the
list of statements typically gives higher precision. In the remainder we will
use the term statement, but all of the algorithms work for tokens as well.

Performance properties: The tasks performed during pre-
processing (reading from disk, scanning and normalization)
are linear in time and space w.r.t. the size of the input files.
Furthermore, preprocessing is trivially parallelizable, since
individual files can be processed independently. The bottle-
neck that determines clone detection performance, particularly
scalability and the ability to perform incremental updates, is
hence the algorithm employed in the detection phase.

Index-based clone detection, consequently, represents a
novel approach for the detection phase. Both pre- and postpro-
cessing components, in contrast, are not novel but reused from
our state of the art clone detector ConQAT. The clones detected
by the index-based approach are identical to those detected
by our existing suffix-tree-based algorithm—but, importantly,
performance in terms of scalability and ability to perform
incremental updates is improved significantly.

B. Clone Index

This section describes the clone index, the central data
structure used for our detection algorithm. It allows the lookup
of all clones for a single file (and thus also for the entire
system), and can be updated efficiently, when files are added,
removed, or modified.

The list of all clones of a system is not a suitable substitute
for a clone index, as efficient update is not possible. Adding
a new file may potentially introduce new clones to any of the
existing files and thus a comparison to all files is required if
no additional data structure is used.

The core idea of the clone index is similar to the inverted
index used in document retrieval systems (c.f., [36], pp. 560–
663). There, a mapping from each word to all its occurrences
is maintained. Similarly, the clone index maintains a mapping
from sequences of normalized statements to their occurrences.
More precisely, the clone index is a list of tuples (file,
statement index, sequence hash, info), where
• file is the name of the file,
• statement index is an integer denoting the position in

the list of normalized statements for the file,
• sequence hash is a hash code for the next n normalized

statements in the file starting from the statement index (n
is a constant called chunk length and is usually set to the
minimal clone length), and

• info contains any additional data, which is not required
for the algorithms, but might be useful when producing
the list of clones, such as the start and end lines of the
statement sequence.

The clone index contains the described tuples for all files
and all possible statement indices, i.e., for a single file the
statement sequences (1, . . . , n), (2, . . . , (n+1)), (3, . . . , (n+
2)), etc. are stored. Our detection algorithm requires lookups
of tuples both by file and by sequence hash, so both should
be supported efficiently. Other than that, no restrictions are
placed on the index data structure, so there are different
implementations possible, depending on the actual use-case
(c.f., Section IV). These include in-memory indices based on
two hash tables or search trees for the lookups, and disk-based



Fig. 1. The original file (left), its normalization (center), and the corresponding clone index (right).

indices which allow persisting the clone index over time and
processing amounts of code which are too large to fit into main
memory. The latter may be based on database systems, or on
one of the many optimized (and often distributed) key-value
stores [37], [38].

In Fig. 1, the correspondence between an input file “X.j”4

and the clone index is visualized for a chunk length of 5. The
field which requires most explanation is the sequence hash.
The reason for using statement sequences in the index instead
of individual statements is that the statement sequences are
more unique (two identical statement sequences are less likely
than two identical statements) and are already quite similar to
the clones. If there are two entries in the index with the same
sequence, we already have a clone of length at least n. The
reason for storing a hash in the index instead of the entire
sequence is for saving space, as this way the size of the index is
independent of the choice of n, and usually the hash is shorter
than the sequence’s contents even for small values of n. We use
the MD5 hashing algorithm [39] which calculates 128 bit hash
values and is typically used in cryptographic applications, such
as the calculation of message signatures. As our algorithm
only works on the hash values, several statement sequences
with the same MD5 hash value would cause false positives
in the reported clones. While there are cryptographic attacks
which can generate messages with the same hash value [40],
the case of different statement sequences producing the same
MD5 hash is so unlikely in our setting, that it can be neglected
for practical purposes.

C. Clone Retrieval
Clone retrieval is the process of extracting all clones for a

single file from the index. Usually we assume that the file is
contained in the index, but of course the same process can
be applied to find clones between the index and an external
file as well. Tuples with the same sequence hash already
indicate clones with a length of at least n (where n is the
globally constant chunk length). The goal of clone retrieval
is to report only maximal clones, i.e., clone groups which
are not completely contained in another clone group. The
overall algorithm, which calculates the longest subsequences
of duplicated chunks, is sketched in Fig. 2 and explained in
more detail next.

The first step (up to Line 6) is to create the list c of
duplicated chunks. This list stores for each statement of the

4We use the name X.j instead of X.java as an abbreviation in the figures.

1: function reportClones (filename)
2: let f be the list of tuples corresponding to filename

sorted by statement index either read from
the index or calculated on the fly

3: let c be a list with c(0) = ∅
4: for i := 1 to length(f) do
5: retrieve tuples with same sequence hash as f(i)
6: store this set as c(i)

7: for i := 1 to length(c) do
8: if |c(i)| < 2 or c(i)⊆̃c(i− 1) then
9: continue with next loop iteration

10: let a := c(i)
11: for j := i+ 1 to length(c) do
12: let a′ := a∩̃c(j)
13: if |a′| < |a| then
14: report clones from c(i) to a (see text)
15: a := a′

16: if |a| < 2 or a⊆̃c(i− 1) then
17: break inner loop

Fig. 2. Clone Retrieval Algorithm

Fig. 3. Lookups performed for retrieval

input file all tuples from the index with the same sequence hash
as the sequence found in the file. The index used to access the
list c corresponds to the statement index in the input file. The
setup is depicted in Fig. 3. There is a clone in X.j of length
10 (6 tuples with chunk length 5) with the file Y.j, and a clone
of length 7 with both Y.j and Z.j.

In the main loop (starting from Line 7), we first check
whether any new clones might start at this position. If there
is only a single tuple with this hash (which has to belong
to the inspected file at the current location) we skip this loop



iteration. The same holds if all tuples at position i have already
been present at position i− 1, as in this case any clone group
found at position i would be included in a clone group starting
at position i− 1. Although we use the subset operator in the
algorithm description, this is not really a subset operation,
as of course the statement index of the tuples in c(i) will be
increased by 1 compared to the corresponding ones in c(i−1)
and the hash and info fields will differ.

The set a introduced in Line 10 is called the active set and
contains all tuples corresponding to clones which have not yet
been reported. At each iteration of the inner loop the set a
is reduced to tuples which are also present in c(j); again the
intersection operator has to account for the increased statement
index and different hash and info fields. The new value is
stored in a′. Clones are only reported, if tuples are lost in
Line 12, as otherwise all current clones could be prolonged
by one statement. Clone reporting matches tuples that, after
correction of the statement index, appear in both c(i) and a;
each matched pair corresponds to a single clone. Its location
can be extracted from the filename and info fields. All clones
in a single reporting step belong to one clone group. Line 16
early exits the inner loop if either no more clones are starting
from position i (i.e., a is too small), or if all tuples from a
have already been in c(i − 1), corrected for statement index.
In this case they have already been reported in the previous
iteration of the outer loop.

This algorithm returns all clone groups with at least one
clone instance in the given file and with a minimal length
of chunk length n. Shorter clones cannot be detected with
the index, so n must be chosen equal to or smaller than the
minimal clone length (typically 7 or 10). Of course, reported
clones can be easily filtered to only include clones with a
length l > n.

One problem of this algorithm is that clone classes with
multiple instances in the same file are encountered and re-
ported multiple times. Furthermore, when calculating the clone
groups for all files in a system, clone groups will be reported
more than once as well. Both cases can be avoided, by
checking whether the first element of a′ (with respect to a
fixed order) is equal to f(j) and only report in this case.

Complexity: For the discussion of complexity we denote the
number of statements by |f | and the number of tuples returned
for its i-th statement by |c(i)| (just as in the algorithm). The
number of tuples in the index is denoted by N . For the first part
of the algorithm the number of queries to the index is exactly
|f |+1. Assuming that a single query returning q elements can
be performed in O(q+logN), which is true for typical index
implementations, the first part up to Line 6 requires at most
time O(

∑
i |c(i)|+ |f | logN).

The set operations used in the algorithm are easily imple-
mented in linear time if the sets c(i) are managed as sorted
lists. Thus, the running time of the part starting from Line 7
is bounded by O(|f |2 max c(i)), which seems to be rather
inefficient. It should be noted, however, that the worst-case
is hard to construct and nearly never appears in real-world

systems. For both the case that a file contains not a single
clone (i.e., |c(i)| = 1 for all i), and that an exact duplicate
exists for a file but no clone to other files, the runtime of
this part improves to O(|f |). As the overall performance of
the clone retrieval algorithm strongly depends on the structure
of the analyzed system, practical measurements are important,
which are reported on in Sec. IV.

D. Index Maintenance

By the term index maintenance we understand all steps
required to keep the index up to date in the presence of
code changes. For index maintenance, only two operations
are needed, namely addition and removal of single files.
Modifications of files can be reduced to a remove operation
followed by an addition5 and index creation is just addition of
all existing files starting from an empty index. In the index-
based model, both operations are extremely simple. To add
a new file, it has to be read and preprocessed to produce
its sequence of normalized statements. From this sequence,
all possible contiguous sequences of length n (where n is
the chunk length) are generated, which are then hashed and
inserted as tuples into the index. Similarly, the removal of
a file consists of the removal of all tuples which contain the
respective file. Depending on the implementation of the index,
addition and removal of tuples can cause additional processing
steps (such as rebalancing search trees, or recovering freed
disk space), but these are not considered here.

We may assume that preprocessing time of a file is linear in
its size6. Depending on the index structure used, addition and
removal of single tuples typically requires expected amortized
processing time O(1) (e.g., for hash tables), or O(logN)
where N is the number of stored tuples (e.g., for search trees).
Thus, the index maintenance operations can be expected to run
in linear time or time O(|f | logN).

E. Implementation Considerations

There are two factors affecting the processing time required
for index maintenance and clone retrieval: the chunk size n,
and the implementation of the clone index. The size of n
affects both index maintenance, which is more efficient for
small n, and clone retrieval, which benefits from larger n.
Additionally, n has to be chosen smaller than the minimal
clone length, as only clones consisting of at least n statements
can be found using the index. For practical purposes we
usually choose n smaller than or equal to the minimal clone
length we are interested in. Values of n smaller than 5 typically
lead to a large number of tuples with the same hash value an
thus severely affect clone retrieval.

The index implementation is affected both by the choice of
the data structure and the kind of storage medium used. As

5This simplification makes sense only if a single file is small compared to
the entire code base, which holds for most systems. If a system only consists
of a small number of huge files, more refined update operations would be
required.

6The preprocessing phase of most token-based clone detectors runs in linear
time, as both tokenization and normalization with constant look-ahead are
linear time operations.



long as the system is small enough to fit into main memory,
this is of course the best medium to use in terms of access and
latency times. If the system’s size exceeds a certain threshold
or the index should be persisted and maintained over a longer
period of time, disk-based implementations are preferable.
Finally, for distributed operation, network-based distributed
index implementations are used. The data structure should be
chosen based on the mode of operation.

If the index will not live long enough to require any changes,
no index maintenance is required. The detection of clones can
be split into separate index creation (possibly followed by an
index optimization phase) and clone retrieval phases. Often
this allows the use of more compact or efficient data structures.
Examples of different index implementations will be presented
in the next section.

IV. CASE STUDIES

This section summarizes the results from three case studies.
Section IV-A focusses on the batch detection use-case and
compares the results with our existing implementation of
a suffix-tree-based detector [16]. Section IV-B investigates
clone detection for very large code bases by distribution to
multiple machines. Finally, Section IV-C presents the use-
case of a continuously updated clone index that provides
real time clone detection information. Depending on the use-
case the algorithm has to be adapted by using a suitable
index implementation, which is described in the corresponding
section. For all experiments a minimal clone length of 10
statements7 was chosen. The index implementation used is
described in each of the sub sections.

As the algorithm proposed in this paper is exact8, i.e., re-
ports all exact duplicates in the normalized statements, we omit
a discussion of precision and recall. Both are only affected by
the normalization phase (and possibly post-processing), which
is outside the scope of the paper.

The case studies in Section IV-A and Section IV-C were
performed on a Mac with a Linux operating system, an Intel
Core 2 Duo CPU with 2.4 GHz, and 4 GB of RAM. The
case study for the distributed clone detection was conducted
on Google’s computing infrastructure.

A. Batch Clone Detection

In this case study, we show that the index-based approach
detects the same clones as our suffix-tree-based implementa-
tion and compare execution times.

Index implementation: We utilized an in-memory clone
index implementation that is based on a simple list which
is only sorted once after the creation of the index. This is
possible as we are in a batch setting where the index is

7This minimal clone length provides, according to our experiences, a good
trade-off between precision and recall.

8The only possible source of error is the MD5 hashing. Our first case
study (Sec. IV-A) shows that even for several million lines of source code
our algorithms yields the same results as an exact suffix-tree-based algorithm.
Thus we conclude that hash collisions are so unlikely in practice, that we can
consider the algorithm exact.

TABLE I
ANALYZED SYSTEMS

Jabref Commercial Linux Kernel
Version 2.6 n/a 2.6.33.2

Language Java ABAP C
Files 562 2,631 25,663

Lines of code 114,887 460,730 11,250,148
Clones 419 12,769 60,353

Clone classes 160 2,625 21,212

TABLE II
EXECUTION TIME (BATCH CD)

Jabref Commercial Linux Kernel
Suffix-tree 7.3 sec 28.7 sec 166 min 13 sec

Index-based 6.7 sec 28.7 sec 47 min 29 sec

not changed after creation. The sorted list allows (amortized)
constant time insertions, as sorting is only performed in the
end, and logarithmic query time using binary search.

Design and Procedure: We used two open source and
one commercial software system (called Commercial for non-
disclosure reasons) as study objects. Overview information is
shown in Table I. We chose systems developed in different
programming languages and from different organizations to
increase the transferability of the results.

To compare the execution time of both approaches, we
set up two clone detection configurations for ConQAT which
used the same normalization. The only difference was the
actual clone detection algorithm: the first configuration used
our suffix-tree-based detection algorithm, whereas the other
used the index-based implementation. We used our existing
suffix-tree-based implementation for the comparison, to assure
that the exact same clones are found and therefore allow
for comparability of execution times. We ensured that the
algorithms detected the exact same clones by comparing
automatically generated textual reports of all clones.

Results: The comparison of the files with all reported clones
revealed that both algorithms yielded exactly the same clones.
Table II illustrates the execution time of the index-based ap-
proach compared to the suffix-tree-based clone detection. The
time for the index-based approach consists of the time required
to build the index and the time to retrieve all clones. For Jabref
and Commercial, we took the fastest execution of several runs,
to eliminate measurement errors due to background processes
executed on the machine.

Discussion: For each of the analyzed systems, the index-
based algorithm is as fast or faster than the suffix-tree-based
algorithm. For the largest system, it is more than three times
faster. As the suffix-tree-based algorithm runs in worst-case
linear time and the index-based one in expected linear time
(if the system consists of sufficiently many files), we account
the difference in speed to the constants involved. Especially
the simpler data structures used in the index-based algorithm
might use the memory hierarchy more efficiently, which



especially shows for larger code sizes. These results indicate
that index-based detection could, in principle, substitute suffix-
tree-based detection, which is employed by many existing
tools [10], [17], [12], [16], [5].

B. Distributed Clone Detection

To evaluate the scalability of our algorithm to large code
bases and distribution on multiple machines, we performed a
case study using Google’s computing infrastructure.

Index implementation: We used an index implemented on
top of Bigtable [37], a key-value store supporting distributed
access and storage. To reduce network overhead, composite
operations are used for index access.

Design and Procedure: Google’s MapReduce9 infrastruc-
ture [41] is used as distribution mechanism. We implemented
two separate MapReduce programs. Both use the map phase
to distribute the detection subtasks for the individual files; the
reduce phase is skipped.

The first MapReduce program constructs the clone index
and stores it in a Bigtable. As the addition of different
files to the index is completely independent, it can be easily
parallelized. The mapper receives the names and contents of
the files, performs preprocessing and normalization, and stores
the resulting tuples in the index.

The second one retrieves all clones and calculates the
clone coverage10 for all files in the index. Calculation of the
clone coverage for individual files is completely independent
once the index has been calculated. Thus, again the mapper
retrieves the names of files to be processed, calculates the
clone coverage value, and stores it in the Bigtable.

We applied the detection to third party open source soft-
ware, including, e.g., WebKit, Subversion, and Boost. In total,
detection processed 73.2 MLOC of Java, C, and C++ code in
201,283 files. To evaluate scalability, we executed both index
creation and coverage calculation as separate jobs, both on
different numbers of machines11.

In addition, to evaluate scalability to ultra-large code bases,
we measured the runtime of the index construction job on
about 120 million C/C++ files from the code indexed by
Google Code Search12 on 1000 machines. The overall amount
of code processed accumulates to 2.9 GLOC13. The only
relevant use case we see for such amounts of code is copyright
infringement analysis, for which only cloning between a single
project against the large index is relevant. We thus did not
attempt to detect all clones for it.

9MapReduce is a technique for executing processing and aggregation tasks
on large input sets on a cluster of commodity hardware both efficiently and
reliably.

10The clone coverage is the fraction of statements of a file (or system)
which are contained in at least one clone and thus can be interpreted as the
probability, that a change to an arbitrary code location affects a clone and
thus potentially has to be replicated at another place.

11The machines used have Intel Xeon processors from which only a single
core was used, and the task allocated about 3 GB RAM on each.

12http://www.google.com/codesearch
13More precisely these are 2,915,947,163 lines of code.
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Results: Using 100 machines, index creation and coverage
computation for the 73.2 MLOC of code together took about
36 minutes. For 10 machines, the processing time is still
only slightly above 3 hours. The times for index creation and
clone retrieval are depicted in Fig. 4 for 10, 20, 50, 80, and
100 machines. The plot in Fig. 5 shows the overall machine
time spent, which is simply the product of the running time
multiplied by the number of machines.

The creation of the clone index for the 2.9 GLOC of C/C++
sources in the Google Code Search index required less than 7
hours on 1000 machines.

Discussion: As the cluster is concurrently used for other
tasks, the measured times vary based on its overall load. This,
however, can only increase the required processing time, so
the reported numbers may be interpreted as a worst-case when
running on an isolated cluster. The second observation is the
saturation of the execution time curve, which is especially
visible for the clone retrieval task. MapReduce distributes
work as large processing blocks (in our case lists of files to
be processed). Towards the end of the job, most machines
are usually waiting for a small number of machines which
had a slightly larger computing task. Large files or files with



many clones can cause some of these file lists to require
substantially longer processing times, causing this saturation
effect. The algorithm thus scales well up to a certain number of
machines. It seems that using more than about 30 machines for
retrieval does not make sense for a code base of the given size.
However, the large job processing 2.9 GLOC demonstrates the
(absence of) limits for the index construction part.

Since a substantial part of the time is spent on network
communication, these times may not be compared with those
of the previous section. Instead, a better comparison would
be with [35], where about 400 MLOC were processed on 80
machines within 51 hours. While our code base is about a
factor of 5.5 smaller, using 80 machines, index-based detection
is 86 times faster. Using only ten machines, it is still a factor
of 16.5 faster (on the smaller code base). For a conclusive
comparison, we would have to run both approaches on the
same code and hardware. However, these numbers indicate
that the gained speedup is not only due to reduced code size
or the use of slightly different hardware, but also because of
algorithmic improvement.

C. Real Time Clone Detection

This case study investigates suitability for real-time clone
detection on large code that is modified continuously.

Index implementation: We used a persistent clone index
implementation based on Berkeley DB14, a high-performance
embedded database.

Design and Procedure: To evaluate the support for real time
clone management, we measured the time required to (1) build
the index, (2) update the index in response to changes to the
system, and (3) query the index. For this, we used code of
version 3.3 of the Eclipse SDK consisting of 209.312 Java files
which comprise 42.693.793 lines of code. Since our approach
is incremental, a full indexing has to happen only once. To
assess the performance of the index building, we constructed
the index for the Eclipse source code and measured the overall
time required. Furthermore, to evaluate the incremental update
capabilities of the index, we removed 1,000 randomly selected
files from the Eclipse index and re-added them afterwards.
Likewise, for the query capability, we queried the index for
the clone classes of 1,000 randomly selected files.

Results: On the test system, the index creation process for
the Eclipse SDK including writing the clone index to the
database took 7 hours and 4 minutes. The clone index for the
Eclipse SDK occupied 5.6 GB on the hard disk. In comparison,
the source code itself needed 1.8 GB disk space, i.e., the index
used about 3 times the space of the original system. The test
system was able to answer a query for a single file at an
average time of 0.91 seconds, and a median query time of
0.21 seconds. Only 14 of the 1000 files had a query time of
over 10 seconds. On average they had a size of 3 kLOC and
350 clones. The update of the clone index including writing it

14http://www.oracle.com/technology/products/berkeley-db/index.html

TABLE III
CLONE MANAGEMENT PERFORMANCE

Index creation (complete) 7 hr 4 min
Index query (per file) 0.21 sec median

0.91 sec average
Index update (per file) 0.85 sec average

to the database took 0.85 seconds on average per file. Table III
illustrates these performance measurement results at a glance.

Discussion: The results from this case study indicate that
our approach is capable of supporting real time clone manage-
ment. The average time for an index query is, in our opinion,
fast enough to support interactive display of clone information
when a source file is opened in the IDE. Furthermore, the
performance of index updates allows for continuous index
maintenance.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel clone detection approach that
employs an index for efficient clone retrieval. To the best of
our knowledge, it is the first approach that is at the same time
incremental and scalable to very large code bases.

The clone index not only allows the retrieval of all clones
contained in a system, but also supports the efficient retrieval
of the clones that cover a specific file. This allows clone
management tools to provision developers in real-time with
cloning information while they maintain code. For a case study
on 42 MLOC of Eclipse, average retrieval time was below
1 second, demonstrating applicability to very large software.
Since the clone index can be updated incrementally while the
software changes, cloning information can be kept accurate at
all times.

The clone index can be distributed across different ma-
chines, enabling index creation, maintenance and clone re-
trieval to be parallelized. Index-based clone detection thus
imposes no limits on scalability—it can simply be improved
by adding hardware resources—while retaining its ability
for incremental updates. For the case study, 100 machines
performed clone detection in 73 MLOC of open source code
in 36 minutes.

For the analyzed systems, index-based clone detection (em-
ploying an in-memory index) outperforms suffix-tree-based
clone detection. This indicates that the index-based detection
algorithm can potentially substitute suffix-tree-based algo-
rithms, which are employed by many existing clone detectors.

For future work, we plan to develop algorithms that employ
the clone index to detect type 3 clones15. One approach is to
use hash functions that are robust to further classes of changes,
such as e.g., n-gram based hashing as proposed by Smith and
Horwitz in [42]. Another approach is to use locality sensitive
hashing, as e.g., employed by [14] and adapt the retrieval to
also find similar, not only identical, hashes. Furthermore, based

15Type 3 clones can differ beyond the token level; statements can be
inserted, changed or removed [1].



on our existing tool support for clone detection in natural
language documents [43], we plan to employ the index-based
approach for plagiarism detection in text documents.

Our implementation of index-based clone detection (except
the Google-specific parts) is available as open source.
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