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Abstract

Real-world software systems contain substantial
amounts of cloned code. While the negative impact of
cloning on software maintenance has been shown in
principle, we currently cannot quantify it in terms of
increased maintenance costs. However, as long as its
economic impact cannot be quantified, control of cloning is
probable to be neglected in practice. This paper presents
an analytical cost model to estimate the maintenance effort
increase caused by code cloning. The cost model can be
used to assess the economic impact of cloning in a system
and to evaluate investments in clone management tool
support. To show its applicability, we report on a case
study that instantiates the cost model for 11 industrial
software systems.

1. Introduction

Code cloning abounds in real world software. Numerous
studies report substantial amounts of cloning in open source
and industrial systems [26, 32]. To name just a few, signif-
icant cloning was detected in GCC [14], X Windows [2],
Linux and JDK [30]. Although the extent varies between
systems, cloning occurs across programming languages, de-
velopment contexts and application domains. Furthermore,
it is not limited to source code. Recent studies have dis-
covered substantial amounts of cloning in models [10] and
requirements specifications [12, 15]. Cloning thus has to
be considered as a phenomenon that occurs across different
software artifacts.

Substantial research effort on software clones has estab-
lished the negative impact of cloning on software mainte-
nance activities in general [17]. It, often unnecessarily, in-
creases code size and thus effort required for size-related
activities such as inspections. Since changes to a piece of
code, such as a bug fix, often need to be performed to its
duplicates as well, cloning increases modification effort. If
duplicates are missed when cloned code is modified, incon-
sistencies can be introduced into the system that can lead

to faults, or existing faults can fail to be removed from the
system. A study we published in [22] uncovered over 100
faults in productive software through analysis of uninten-
tionally inconsistent changes to cloned code.

While the negative consequences of cloning have firmly
been established qualitatively, their quantitative impact re-
mains unclear. We are currently unaware of how large the
economic impact of cloning is w.r.t. the total maintenance
effort. We thus cannot determine how harmful cloning is for
a project in economic terms. Industrial software engineer-
ing is done with scarce resources—factors that cannot be
quantified are probable to be neglected in favor of compet-
ing factors that can be quantified, such as open bug issues
or change requests. As long as we do not know the costs
cloning causes, clone control is prone to be neglected—
even though cloning could be the root cause, and open bugs
and change requests the symptoms.

Understanding of the costs caused by cloning is a nec-
essary foundation to evaluate alternative clone management
strategies. Do expected maintenance cost reductions justify
the effort required for clone removal? How large are the
potential savings that clone management tools can provide?
We need a clone cost model to answer these questions.

Problem While the negative consequences of cloning are
established qualitatively, the economic impact of cloning
on maintenance is poorly understood. Consequently, we
lack the foundation to assess the economic harmfulness
of cloning and to evaluate alternative clone management
strategies.

Contribution We propose an analytical cost model to es-
timate the impact that code cloning has on software mainte-
nance efforts. We present a case study that instantiates the
cost model for 11 industrial software systems and estimates
maintenance effort increase and potential benefits achiev-
able through clone management tool support. The paper
presents work in progress—we point out shortcomings and
directions of future research—but provides a step towards a
more economically substantiated discussion of cloning.



2. Terms & Definitions

Clones are regions of similar code. In the literature, dif-
ferent definitions of similarity are employed [26,32], mostly
based on syntactical characteristics. In this paper, we re-
quire clones to be semantically similar in the sense that they
implement one or more common concepts. This redundant
concept implementations gives rise to change coupling:
when the concept changes, all of its implementations—
the clones—need to be changed. In addition, we require
clones to be syntactically similar. While syntactic similar-
ity is not required for change coupling, existing clone detec-
tion approaches rely on syntactic similarity to detect clones.
Hence, we employ the term clone to denote syntactically
similar code regions that contain redundant implementation
of one or more concepts. A clone group is a set of clones.
Clones in a single group are referred to as siblings.

We use the term failure to denote an incorrect output of
a software visible to the user. A fault is the cause of a po-
tential failure in the source code.

Lines of code (LOC) denote the sum of the lines of code
of all source files, including comments and blank lines.
Source statements (SS) are the number of all source code
statements, not taking commented or blank lines and code
formatting into account. Redundancy free source statements
(RFSS) are the number of source statements, if cloned
source statements are only counted once. It thus estimates
the size of a system from which all cloning is perfectly re-
moved. For example, if a file contains 100 statements (and
no clones) in version 1, and 50 of them are duplicated in
the file to create version 2. SS increases to 150, but RFSS
remains at 100. Overhead denotes the ratio by which a sys-
tem’s size has increased due to cloning. It is computed as

SS
RFSS − 1. For the above example, the resulting overhead is
0.5, denoting a cloning induced size increase by 50%.

3. Maintenance Process

This section introduces the software maintenance pro-
cess on which the cost model is based. It qualitatively de-
scribes the impact of cloning for each process activity and
discusses potential benefits of clone management tools. The
process is loosely based on the IEEE 1219 standard [18] that
describes the activities carried on single change requests
(CRs) in a waterfall fashion. The succesive execution of ac-
tivities that, in practice, are typically carried out in an inter-
leaved and iterated manner, serves the clarity of the model
but does limit its application to waterfall-style processes.

Analysis (A) studies the feasibility and scope of the
change request to devise a preliminary plan for design, im-
plementation and quality assurance. Most of it takes place

on the problem domain. Analysis is not impacted by code
cloning, since code does not play a central part in it.1

Location (L) determines a set of change start points. It
thus performs a mapping from problem domain concepts
affected by the CR to the solution domain. Location does
not contain impact analysis, that is, consequences of modifi-
cations of the change start points are not analyzed. Location
involves inspection of source code to determine change start
points. We assume that the location effort is proportional to
the amount of code that gets inspected.

Cloning increases the size of the code that needs to be in-
spected during location and thus affects location effort. We
are not aware of tool support to alleviate the consequences
of code cloning on location.

Design (D) uses the results of analysis and location as
well as the software system and its documentation to de-
sign the modification of the system. We assume that design
is not impacted by cloning. This is a conservative assump-
tion, since for a heavily cloned system, design could attempt
to avoid modifications of heavily cloned areas.

Impact Analysis (IA) uses the change start points from
location to determine where changes in the code need to be
made to implement the design. The change start points are
typically not the only places where modifications need to
be performed—changes to them often require adaptations
in use sites. We assume that the effort required for impact
analysis is proportional to the number of source locations
that need to be determined.

If the concept that needs to be changed is implemented
redundantly in multiple locations, all of them need to be
changed. Cloning thus affects impact analysis, since the
number of change points is increased by cloned code. Tool
support (clone indication) simplifies impact analysis of
changes to cloned code. Ideal tool support could reduce
cloning effect on impact analysis to zero.

Implementation (Impl) realizes the designed change in
the source code. We differentiate between two classes of
changes to source code. Additions add new source code
to the system without changing existing code. Modifica-
tions alter existing source code and are performed to the
source locations determined by impact analysis. We assume
that effort required for implementation is proportional to the
amount of code that gets added or modified.

We assume that adding new code is unaffected by
cloning in existing code. Implementation is still affected by

1Possible effects of cloning in requirements specifications, which could
in principle affect analysis, are beyond the scope of this paper.



cloning, since modifications to cloned code need to be per-
formed multiple times. Linked editing tools could, ideally,
reduce effects of cloning on implementation to zero.

Quality Assurance (QA) comprises all testing and in-
spection activities carried out to validate that the modifica-
tion satisfies the change request. We assume a smart qual-
ity assurance strategy—only code affected by the change is
processed. We do not limit the maintenance process to a
specific quality assurance technique. However, we assume
that quality assurance steps are systematically applied, e. g.,
all changes are inspected or testing is performed until a cer-
tain test coverage is achieved on the affected system parts.
Consequently, we assume that quality assurance effort is
proportional to the amount of code on which quality assur-
ance is performed.

We differentiate two effects of cloning on quality assur-
ance: cloning increases the change size and thus the amount
of modified code that needs to be quality assured. Second,
just as modified code, added code can contain cloning. This
also increases the amount of code that needs to be quality
assured and hence the required effort. We are not aware
of tool support that can substantially alleviate the conse-
quences of cloning on quality assurance.

Other (O) comprises further activities, such as, e. g., de-
livery and deployment, user support or change control board
meetings. Since code does not play a central part in these
activities, they are not affected by cloning.

4. Detailed Cost Model

This section introduces a detailed cost model that quan-
tifies the impact of cloning on software maintenance. The
model assumes each activity of the maintenance process to
be completed. It is thus not suitable to model partial change
request implementations that are aborted at some point.

4.1. General Approach

The total maintenance effort E is the sum of the efforts
of individual change requests:

E =
∑

cr∈CR

e (cr)

The scope of the cost model is determined by the popu-
lation of the set CR: to compute the maintenance effort for
a time span t, it is populated with all change requests that
are realized in that period. Alternatively, if the total life-
time maintenance costs are to be computed, CR is populated
with all change requests ever performed on the system. The
model can thus scale to different project scopes.

The effort of a single change request cr ∈ CR is ex-
pressed by e (cr). It is the sum of the efforts of the indi-
vidual activities performed during the realization of the cr.
The activity efforts are denoted as e X, where X identifies
the activity. For brevity, we omit (cr) in the following:

e = e A + e L + e D + e IA + e Impl + e QA + e O

In order to model the impact of cloning on maintenance
efforts, we split e into two components: inherent effort e i

and cloning induced overhead e c. e i is independent of
cloning. It captures the effort required to perform an ac-
tivity on a hypothetical version of the software that does not
contain cloning. e c, in contrast, captures the effort penalty
caused by cloning. Total effort is expressed as the sum of
the two:

e = e i + e c

The increase in efforts due to cloning, ∆e , is captured
by e i+e c

e i − 1, or simply e c

e i . The cost model thus expresses
cloning induced overhead relative to the inherent effort re-
quired to realize a change request. The increase in total
maintenance efforts due to cloning, ∆E , is proportional to
the average effort increase per change request and thus cap-
tured by the same expression.

4.2. Activity Models

The activities Analysis, Design, and Other are not im-
pacted by cloning. Their cloning induced effort, e c, is thus
zero. Their total efforts hence equal their inherent efforts.

Location effort depends on code size. Cloning increases
code size. We assume that, on average, increase of the
amount of code that needs to be inspected during location
is proportional to the cloning induced size increase of the
entire code base. Size increase is captured by overhead:

e c
L = e i

L · overhead

Impact analysis effort depends on the number of change
points that need to be determined. Cloning increases the
number of change points. We assume that e c

IA is pro-
portional to the cloning-induced increase in the number of
source locations. This increase is captured by overhead:

e c
IA = e i

IA · overhead



Implementation effort comprises both addition and mod-
ification effort: e Impl = e ImplMod

+ e ImplAdd
. We assume that

effort required for additions is unaffected by cloning in ex-
isting source code. We assume that the effort required for
modification is proportional to the amount of code that gets
modified,, i. e., the number of source locations determined
by impact analysis. Its cloning induced overhead is, conse-
quently, affected by the same increase as impact analysis:
e c

Impl = e i
ImplMod

· overhead.
The modification ratio mod captures the modification-

related part of the inherent implementation effort:
e ImplMod

= e Impl ·mod. Consequently, e c
Impl is:

e c
Impl = e i

Impl · mod · overhead

Quality Assurance effort depends on the amount of code
on which quality assurance gets performed. Both modifi-
cations and additions need to be quality assured. Since the
measure overhead captures size increase of both additions
and modifications, we do not need to differentiate between
them, if we assume that cloning is, on average, similar in
modified and added code. The increase in quality assurance
effort is hence captured by the overhead measure:

e c
QA = e i

QA · overhead

4.3. Maintenance Effort Increase Model

Based on the models for the individual activities, we
model cloning induced maintenance effort e c for a single
change request like this:

e c = overhead · (e i
L + e i

IA + e i
Impl · mod + e i

QA)

The relative cloning induced overhead is computed as
follows:

∆e =
overhead · (e i

L + e i
IA + e i

Impl · mod + e i
QA)

e i
A + e i

L + e i
D + e i

IA + e i
Impl + e i

QA + e i
O

This model allows to compute the relative effort increase
in maintenance costs caused by cloning. It does not take
consequences of cloning on program correctness into ac-
count. This is done in the next section.

4.4. Fault Increase

Quality assurance is not perfect. Even if performed thor-
oughly, faults may remain unnoticed and cause failures in
production.

Quality assurance can be decomposed into two sub-
activities: fault detection and fault removal. We assume
that, independent of the quality assurance technique, the ef-
fort required to detect a single fault in a system depends
primarily on its fault density. We furthermore assume, that
average fault removal effort for a system is independent of
its size and fault density. These assumptions allow us to rea-
son about the number of remaining faults in similar systems
of different size but equal fault densities. If a QA procedure
is applied with the same amount of available effort per unit
of size, we expect a similar reduction in defect density, since
the similar defect densities imply equal costs for fault loca-
tion per unit. For these systems, the same number of faults
can thus be detected and fixed per unit. For two systems
A and B, with B having twice the size and available QA
effort, we expect a similar reduction of fault density. How-
ever, since B is twice as big, the same fault density means
twice the absolute number of remaining faults.

A system that contains cloning and its hypothetical ver-
sion without cloning are such a pair of similar systems. We
assume that fault density is similar between cloned code
and non-cloned code—cloning duplicates both correct and
faulty statements. Besides system size, cloning thus also in-
creases the absolute number of faults contained in a system.
If the amount of effort available for quality assurance is in-
creased by overhead w.r.t. the system without cloning, the
same reduction in fault density can be achieved. However,
the absolute number of faults is still larger by overhead.

This reasoning assumes that developers are completely
ignorant of cloning. That is, if a fault is fixed in one clone,
it not immediately fixed in any of its siblings. Instead,
faults in siblings are expected to be detected independently.
Empirical data confirms that inconsistent bug fixes do fre-
quently occur in practice [22]. However, it also confirms
that clones are often maintained consistently. Both assum-
ing entirely consistent or entirely inconsistent evolution is
thus not realistic.

In practice, a certain amount of the defects that are de-
tected in cloned code are hence fixed in some of the sibling
clones. This reduces the cloning induced overhead in re-
maining fault counts. However, unless all faults in clones
are fixed in all siblings, resulting fault counts remain higher
than in systems without cloning. Therefore, cloning can
have negative consequences on programm correctness be-
yond activity effort increase captured by the detailed model.

4.5. Tool Support

Clone management tools can alleviate the consequences
of cloning on maintenance efforts. We adapt the detailed
model to quantify the impact of clone management tools.
We evaluate the upper bound of what two different types of
clone management tools can achieve.



Clone Indication makes cloning relationships in source
code available to developers, for example through clone
bars in the IDE that mark cloned code regions. Exam-
ples for clone indication tools include ConQAT and Clone-
Tracker [13]. Optimal clone indication thus lowers the ef-
fort required for clone discovery to zero. It thus simpli-
fies impact analysis, since no additional effort is required to
locate affected clones. Assuming perfect clone indicators,
e c

IA is reduced to zero, yielding this cost model:

∆e =
overhead · (e i

L + e i
Impl · mod + e i

QA)
e i

A + e i
L + e i

D + e i
IA + e i

Impl + e i
QA + e i

O

Linked Editing replicates edit operations performed on
one clone to its siblings. Prototype linked editing tools in-
clude Codelink [35] and CReN [19]. Optimal linked editing
tools thus lowers the overhead required for consistent mod-
ifications of cloned code to zero. Since linked editors typ-
ically also provide clone indication, they also simplify im-
pact analysis. Their application yields the following model:

∆e =
overhead · (e i

L + e i
QA)

e i
A + e i

L + e i
D + e i

IA + e i
Impl + e i

QA + e i
O

We do not think that clone management tools can sub-
stantially reduce the overhead cloning causes for quality as-
surance. If the amount of changed code is larger due to
cloning, more code needs to be processed by quality assur-
ance activities. We do not assume that inspections or test
executions can be simplified substantially by the knowledge
that some similarities reside in the code—faults might still
lurk in the differences.

However, we are convinced that clone indication tools
can substantially reduce the impact that cloning imposes on
the number of faults that slip through quality assurance. If
a single fault is found in cloned code, clone indicators can
point to all the faults in the sibling clones, assisting in their
prompt removal. We assume that perfect clone indication
tools reduce the cloning induced overhead in faults after
quality assurance to zero.

5. Simplified Cost Model

This section introduces a simplified cost model. While
less generally applicable than the detailed model, it is easier
to apply.

Due to its number of factors, the detailed model requires
substantial effort to instantiate in practice—each of its nine
factors needs to be determined. Except for overhead, all
of them quantify maintenance effort distribution across in-
dividual activities. Since in practice the activities are typi-
cally interleaved, without clear transitions between them, is

difficult to get exact estimates on, e. g., how much effort is
spent on location and how much on impact analysis.

The individual factors of the detailed model are required
to make trade-off decisions. We need to distinguish be-
tween, e. g., impact analysis and location in order to eval-
uate the impact that clone indication tool support can pro-
vide, since impact analysis benefits from clone indication,
whereas location does not. Before evaluating trade-offs be-
tween clone management alternatives however, a simpler
decision needs to be taken: whether to do anything about
cloning at all. Only then is it reasonable to invest the effort
to determine accurate parameter values. If the cost model
is not employed to assess clone management tool support,
many of the distinctions between different factors are obso-
lete. We can thus aggregate them to reduce the number of
factors and hence the effort involved in model instantiation.

Written slightly different, the detailed model is:

∆e = overhead ·
e i

L + e i
IA + e i

Impl · mod + e i
QA

e

The fraction is the ratio of effort required for code
comprehension (e i

L + e i
IA), modification of existing code

(e i
Impl · mod) and quality assurance (e i

QA) w.r.t. the entire
effort required for a change request. We introduce the new
parameter cloning-affected effort (CAE) for it:

CAE =
e i

L + e i
IA + e i

Impl · mod + e i
QA

e

If CAE is determined as a whole (without its constituent
parameters), this simplified model provides a simple way to
evaluate the impact of cloning on maintenance efforts:

∆e = overhead · CAE

6. Instantiation

This section describes how the cost model is instantiated
and gives results from a large scale industrial case study.

We apply our quality analysis toolkit ConQAT2 for clone
detection and measure computation. ConQAT is described
in general in [9, 11], its application as a clone detection
workbench in [21].

6.1. Parameter Determination

This section describes how the parameter values can be
determined to instantiate the cost model in practice.

2Available as open source at http://www.conqat.org



Overhead Computation Overhead is computed on the
clones detected for a system. We have developed an al-
gorithm that computes the overhead and implemented it in
ConQAT. It is computed as explained in Section 2. Over-
head captures cloning induced size increase independent of
whether the clones can actually be removed with means of
the programming language. This is intended—the negative
impact of cloning on maintenance activities is independent
of whether the clones can actually be removed.

The accuracy of the overhead value is determined by the
accuracy of the clones on which it is computed. Unfortu-
nately, many existing clone detection tools produce high
false positive rates; Kapser and Godfrey [23] report between
27% and 65%, Tiarks et al. [34] up to 75% of false positives
detected by state-of-the-art tools. False positives exhibit
some level of syntactic similarity, but no common concept
implementation and hence no coupling of their changes.
They thus do not impede software maintenance and must
be excluded from overhead computation.

In order to achieve accurate clone detection results, and
thus an accurate overhead value, clone detection needs to
be tailored. Tailoring removes code that is not maintained
manually, such as generated or unused code, since it does
not impede maintenance. Exclusion of generated code
is important, since generators typically produce similar-
looking files for which large amounts of clones are detected.
Furthermore, tailoring adjusts detection so that false pos-
itives due to overly aggressive normalization are avoided.
This is necessary so that, e. g., regions of Java getters, that
differ in their identifiers and have no conceptual relation-
ship, are not erroneously considered as clones by a detec-
tor that ignores identifier names. According to our expe-
rience [22], after tailoring, clones exhibited change cou-
pling, indicating their semantic relationship through redun-
dant implementation of a common concept.

Determining activity efforts The distribution of the
maintenance efforts depends on many factors, including the
maintenance process employed, the maintenance environ-
ment, the personnel and the tools available [33]. To receive
accurate results, the parameters for the relative efforts of
the individual activities thus need to be determined for each
software system individually.

Coarse effort distributions can be taken from project
calculation, by matching engineer wages against mainte-
nance process activities. This way, the relative analysis
effort, e. g., is estimated as the share of the wages of the
analysts w.r.t. all wages. As we cannot expect engineer
roles to match the activities of our maintenance process ex-
actly, we need to refine the distribution. This can be done
by observing development efforts for change requests to
determine, e. g., how much effort analysts spend on anal-
ysis, location and design, respectively. To be feasible, such

observations need to be carried out on representative sam-
ples of the engineers and of the change requests. Stratified
sampling can be employed to improve representativeness
of results—sampled CRs can be selected according to the
change type distribution, so that representative amounts of
perfective and other CRs are analyzed.

The parameter CAE for the simplified model is still sim-
pler to determine. Effort e is the overall person time spent
on a set of change requests. It can often be obtained from
billing systems. Furthermore, we need to determine person
hours spent on quality assurance, working with code and
spent exclusively developing new code. This can, again, be
done by observing developers working on CRs.

The modification ratio can, in principle, also be deter-
mined by observing developers and differentiating between
additions and modifications. If available, it can alternatively
be estimated from change request type statistics.

Literature values for Activity efforts offer a simple way
to instantiate the model. Unfortunately, the research com-
munity still lacks a thorough understanding of how the
activity costs are distributed across maintenance activi-
ties [33]. Consequently, results based on literature values
are less accurate. They can however serve for a coarse
approximation based on which a decision can be taken,
whether effort for more accurate determination of the pa-
rameters is justified.

Several researchers have measured effort distribution
across maintenance activities. Rombach et al. [31] report
measurement results for three large systems, carried out
over the course of three years and covering around 10,000
hours of maintenance effort. Basili et al. [6] analyzed
25 releases each of 10 different projects, covering over
20,000 hours of effort. Both studies work on data that was
recorded during maintenance. Yeh and Jeng [36] performed
a questionnaire-based survey in Taiwan. Their data is based
on 97 valid responses received for 1000 questionnaires dis-
tributed across Taiwan’s software engineering landscape.
The values of the three studies are depicted in Table 1.

Table 1. Effort distribution

Activity [31] [6] [36] Estimate

Analysis 26% 5%
Location 13% 8%

Design 30% 16% 19% 16%
Impact Analysis 5%
Implementation 22% 29% 26% 26%

Quality Assurance 22% 24% 17% 22%
Other 26% 18% 12% 18%

Since each study used a slightly different maintenance



process, each being different from the one used in this pa-
per, we cannot directly determine average values for activity
distribution. For example, in [31], design subsumes analy-
sis and location. In [6], analysis subsumes location. The
estimated average efforts are depicted in the fourth row of
Table 1. Since the definitions of implementation, quality as-
surance and other are similar between the studies and our
process, we used the median as estimated value. For the
remaining activities, the effort distributions from the litera-
ture are of little help, since the activities do not exist in their
processes or are defined differently. We thus distributed the
remaining 34% of effort according to our best knowledge,
based on our own development experience and that of our
industrial partners.—the distribution can thus be inaccurate.

To determine the ratio between modification and addi-
tion effort during implementation, we inspect the distribu-
tion of change request types. We assume that adaptive, cor-
rective and preventive change requests mainly involve mod-
ifications, whereas perfective changes mainly involve addi-
tions. Consequently, we estimate the ratio between addi-
tion and modification by the ratio of perfective w.r.t. all
other change types. Table 2 shows effort distribution across
change types from the above studies. The fourth row de-
picts the median of all three—37% of maintenance efforts
are spent on perfective CRs, the remaining 63% are dis-
tributed across the other CR types. Based on these values,
we estimate the modification ratio to be 0.63.

Table 2. Change type distribution

Effort [31] [6] [36] Median

Adaptive 7% 5% 8% 7%
Corrective 27% 14% 23% 23%

Other 29% 20% 44% 29%
Perfective 37% 61% 25% 37%

6.2. Case Studies

This section presents the application of the clone cost
model to several large industrial software systems to quan-
tify the impact of cloning, and the possible benefit of clone
management tool support, in practice.

Goal The case study has two goals. First, evaluation of
the clone cost model. Second, quantification of the impact
of cloning on software maintenance costs across different
software systems, and the possible benefit of the application
of clone management tools.

Study Objects We chose 11 industrial software systems
as study objects. Since we require the willingness of de-

velopers to contribute in clone detection tailoring, we had
to rely on our contacts with industry. However, we chose
systems from different domains (finance, content manage-
ment, convenience, power supply, insurance) from 7 dif-
ferent companies written in 5 different programming lan-
guages to capture a representative set of systems. For non-
disclosure reasons, we termed the systems A-K. Table 3
gives an overview ordered by system size.

Study Design and Procedure Clone detection tailoring
was performed to achieve accurate results. System develop-
ers participated in tailoring to identify false positives. Clone
detection and overhead computation was performed using
ConQAT for all study objects. Minimal clone length was
set to 10 statements for all systems. We consider this a con-
servative minimal clone length.

Since the effort parameters are not available to us for
the analyzed systems, we employed values from the litera-
ture. We assume that 50% (8% location, 5% impact analy-
sis, 26% · 0,63 implementation and 22% quality assurance;
rounded from 51,38% to 50% since the available data does
not contain the implied accuracy.) of the overall mainte-
nance effort are affected by cloning. To estimate the impact
of clone indication tool support, we assume that 10% of that
effort are used for impact analysis (5% out of 50% in total).
In case clone indication tools are employed, the impact of
cloning on maintenance effort can thus be reduced by 10%.

Results and Discussion The results are depicted in
Table 3. The columns show lines of code (kLOC),
source statements (kSS), redundancy-free source statements
(kRFSS), size overhead and cloning induced increase in
maintenance effort without (∆E ) and with clone indication
tool support (∆E Tool). Such tool support also reduces the
increase in the number of faults due to cloning. As men-
tioned in Section 4.4, this is not reflected in the model.

The effort increase varies substantially between systems.
The estimated overhead ranges from 75%, for system A, to
5.2% for system F. We could not find a significant correla-
tion between overhead and system size. On average, esti-
mated maintenance effort increase is 20% for the analyzed
systems. The median is 15.9%. For a single quality char-
acteristic, we consider this a substantial impact on mainte-
nance effort. For systems A, B, E, G, I, J and K estimated
effort increase is above 10%; for these systems, it appears
warranted to determine project specific effort parameters to
achieve accurate results and perform clone management to
reduce effort increase.

7. Discussion

This section discusses challenges of cost modeling in
general and of this cost model in particular.



Table 3. Add caption

System Language kLOC kSS kRFSS overhead ∆E ∆E Tool

A XSLT 31 15 6 150.0% 75.0% 67.5%
B ABAP 51 21 15 40.0% 20.0% 18.0%
C C# 154 41 35 17.1% 8.6% 7.7%
D C# 326 108 95 13.7% 6.8% 6.2%
E C# 360 73 59 23.7% 11.9% 10.7%
F C# 423 96 87 10.3% 5.2% 4.7%
G ABAP 461 208 155 34.2% 17.1% 15.4%
H C# 657 242 210 15.2% 7.6% 6.9%
I Cobol 1,005 400 224 78.6% 39.3% 35.4%
J Java 1,347 368 265 38.9% 19.4% 17.5%

K Java 2,179 733 556 31.8% 15.9% 14.3%

7.1. Challenges of project diversity

Many factors influence maintenance productivity [5, 7,
33]: the type of system and domain, development process,
available tools and experience of developers, to name just a
few. Since these factors vary substantially between projects,
they need to be reflected by cost estimation approaches to
achieve accurate absolute results. The more factors a cost
model comprises, the more effort is required for both its
creation and its associated factor lookup tables, and for its
instantiation in practice. If an absolute value is required,
such effort is unavoidable.

The assessment of the impact of cloning differs from the
general cost estimation problem in two important aspects.
First, we compare efforts for two systems—the actual one
and the hypothetical one without cloning—for which most
factors are identical, since our maintenance environment
does not change. Second, relative effort increase w.r.t. the
cloning-free system is sufficient to evaluate the impact of
cloning. Since we do not need an absolute result value in
terms of costs, and since most factors influencing mainte-
nance productivity remain constant in both settings, they do
not need to be contained in our cost model. In a nutshell, we
deliberately chose a relative cost model to keep its number
of parameters and involved instantiation effort at bay.

7.2. Assumptions

The cost model is based on a series of assumptions. It
can only sensibly be applied for projects that satisfy them.
We list and discuss them here to simplify their evaluation.

We assume that the significant part of the cost models
for the maintenance process activities are linear functions
on the size of the code that gets processed. For example, we
assume that location effort is primarily determined by and
proportional to the amount of code that gets inspected dur-
ing location. In some situations, activity cost models might

be more complicated. For example, if an activity has a high
fixed setup cost, the cost model should include a fixed fac-
tor; diseconomy of scale could increase effort w.r.t. size
in a super linear fashion. In such cases, the respective part
of the cost model needs to be adapted appropriately. CO-
COMO II, e. g., uses an exponential function to adapt size
to diseconomy of scale.

We assume that changes to clones are coupled to a sub-
stantial degree. This is in accordance with our experiences
from large scale application of clone detection in industrial
contexts [11, 21, 22], if clone detection is tailored appropri-
ately. In case clones are uncoupled, , e. g., because they are
false positives or because parts of the system are no longer
maintained, the model is not applicable.

We assume that each modification to a clone in a clone
group requires the same amount of effort. We ignore that
subsequent implementations of a single change to multiple
clone instances could get cheaper, since the developer gets
used to that particular clone group. In practice, most clone
groups have size 2. The inaccuracy introduced by this sim-
plification should thus be moderate.

8. Related Work

This section relates the proposed cost model to existing
work on the consequences of code cloning and cost models.

8.1. Consequences of Cloning

Substantial research has been carried out to better under-
stand the consequences of code cloning. A survey is given
by Hordijk et al. in [17]:

Impact of cloning on program correctness is the subject
of several studies. Li et al. [30] present an approach to de-
tect bugs based on inconsistent renaming of identifiers be-
tween clones. Jiang, Su and Chiu [20] analyze different



contexts of clones, such as missing if statements. Both
papers report the successful discovery of bugs in released
software. In [1] and [3], individual cases of bugs or incon-
sistent bug fixes discovered by analysis of clone evolution
are reported for open source software. In earlier work [22],
we inspected inconsistent clones together with the develop-
ers of the analyzed systems. In four open source and four
industrial systems, analysis revealed 107 faults due to unin-
tentionally inconsistent changes to cloned code. The above
studies give strong indication that that cloning impacts cor-
rectness in practice and that developers cannot be assumed
to have complete knowledge of cloning when fixing bugs.

Several researchers have investigated the impact of
cloning on modification effort. In [25], Kim et al. report
that a substantial amount of changes to code clones occur
in a coupled fashion, indicating additional maintenance ef-
fort due to multiple change locations. Aversano et al. [1]
confirm a high ratio of co-evolution in a separate study.
Detected late propagations indicate that a substantial num-
ber of inconsistent changes to clones were later detected
and corrected during quality assurance. These studies give
strong indication that a substantial amount of the modifica-
tions to cloned code are coupled in many systems in prac-
tice, and thus cause additional effort for location and con-
sistent modification.

The above work establishes qualitative relationships be-
tween cloning and maintenance efforts that provide the
foundation of our cost model. It does, however, not allow
to quantify impact of cloning on development efforts. In
contrast, the cost model presented here allows to estimate
impact of cloning on development costs.

Several empirical studies on the evolution of clones are
not conclusive w.r.t. the negative impact of cloning on
maintenance activities. Krinke reports that a substantial
amount of clones evolve independently [27] and that sta-
bility of cloned code was found to be, contrary to expec-
tations, similar or even higher than stability of non-cloned
code [28]. Göde shows that clone evolution patters vary
between different systems [16]. While these studies em-
phasize the importance of further studies on the evolution
of clones to better understand their impact on modification
activities, we are convinced that they do not contradict the
negative impact of cloning on maintenance efforts for sev-
eral reasons. First, data accuracy is unknown—clone de-
tectors frequently produce large amounts of false positives
that can dilute conclusions. Furthermore, evolution does not
necessarily represent intent: many changes are unintention-
ally inconsistent [22]; inspection on evolution history alone
cannot always reveal them. Second, cloning still impedes
maintenance, if not all changes to clones are coupled—it is
sufficient, if a substantial fraction of them are.

Kapser and Godfrey [24] list situations in which cloning
can be considered as a sensible development strategy. How-

ever, their work does not challenge negative consequences
of cloning for software maintenance. Instead, they argue
that cloning can be a sensible tool, if either the software
is not maintained (and thus the negative consequences do
not take effect) or the available alternatives are still more
costly. The proposed cost model can provide a first step to
base such decisions on sound economic considerations.

8.2. Cost Estimation

A substantial number of approaches for software cost
estimation have been proposed. Besides budgeting and
project planning & control, they can in principle be ap-
plied for software improvement investment analysis, such
as , e. g., tool selection of reengineering. The survey by
Boehm, Abts and Chulani gives a detailed overview of ex-
isting approaches [7], including cost model based ones.
Among the most widespread cost models are COCOMO
and its successor COCOMO II [5]. Besides general purpose
cost estimation models, some research has evaluated the
consequences of individual quality characteristics on main-
tenance costs. Banker et al. investigate code complexity [4],
Lanning and Khoshgoftaar [29] examine coupling and Bril
et al. evaluate architecture quality [8].

To the best of our knowledge, the cost model presented
here is the first to focus on the impact of code cloning on
development costs.

9. Conclusion

This paper proposes an analytical cost model to quan-
tify the economic effect of cloning on maintenance efforts.
It can be used as a basis to evaluate clone management al-
ternatives. Instead of computing absolute costs, the model
computes maintenance effort increase relative to a system
without cloning. Since in a relative cost model many fac-
tors that are independent of cloning remain constant, they
do not need to be reflected in it. This way, it only requires
a small number of factors and can be instantiated with rea-
sonable effort in practice.

We have instantiated the cost model on 11 industrial sys-
tems. Although result accuracy could be improved by using
project specific instead of literature values for effort param-
eters, the results indicate that cloning induced impact varies
significantly between systems and is substantial for some.
Based on the results, some projects can achieve consider-
able savings by performing active clone management.

There is a definitive need for future work in this area.
The assumptions the cost model is based on need to be val-
idated. The consequences of cloning on the number of field
failures needs to be modeled quantitatively, instead of qual-
itatively as currently done in the model. We plan to per-
form sensitivity analysis to determine the relative impor-



tance of the individual parameters to guide instantiation in
practice. Furthermore, we intend to instantiate the model
using project specific effort parameters. Lastly but most
importantly, we need to validate the correctness of the re-
sults, e. g., through comparing efforts on projects before and
after clone consolidation with the predicted efforts.
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