Code Similarities Beyond Copy & Paste

Elmar Juergens, Florian Deissenboeck and Benjamin Hummel
Institut fiir Informatik, Technische Universitit Miinchen, Germany
{juergens,deissenb,hummelb} @in.tum.de

Abstract

Redundant source code hinders software maintenance,
since updates have to be performed in multiple places.
This holds independent of whether redundancy was created
by copy&paste or by independent development of behav-
iorally similar code. Existing clone detection tools success-
fully discover syntactically similar redundant code. They
thus work well for redundancy that has been created by
copy&paste. But: how syntactically similar is behaviorally
similar code of independent origin? This paper presents the
results of a controlled experiment that demonstrates that be-
haviorally similar code of independent origin is highly un-
likely to be syntactically similar. In fact, it is so syntactically
different, that existing clone detection approaches cannot
identify more than 1% of such redundancy. This is unfor-
tunate, as manual inspections of open source software in-
dicate that behaviorally similar code of independent origin
does exist in practice and does present problems to mainte-
nance.

1. Similarity # Similarity

Research in software maintenance has shown that
many programs contain a significant amount of duplicated
(cloned) code. Such cloned code is considered harmful for
two reasons: (1) multiple, possibly unnecessary, duplicates
of code increase maintenance costs [16,24] and, (2) incon-
sistent changes to cloned code can create faults and, hence,
lead to incorrect program behavior [13]. Obviously, the
negative impact of clones on software maintenance is not
due to copy&paste but caused by the semantic coupling of
the clones. Hence, behaviorally similar code, independent
of its origin, suffers from the same problems clones are
known for. In fact, the re-creation of existing functional-
ity can be seen as even more critical, since it represents a
missed reuse opportunity.

The research community has developed a number of suc-
cessful approaches to detect and manage code duplication.
However, the capabilities of existing approaches are not
fully clarified yet. While most previous work agrees that
the existing approaches are, indeed, limited to detecting

copy&pasted (and potentially modified) code, it is some-
times conjectured that they can also find code that is behav-
iorally similar but has been developed independently. One
reason for this uncertainty is that we do not really know how
structurally different independently developed code with
similar behavior actually is. As a result, it is currently not
well understood to which extent real world programs con-
tain redundancy that cannot be attributed to copy&paste al-
though intuition tells us that large projects are expected to
contain multiple implementations of the same functionality.

To develop a better understanding of redundancy beyond
copy&paste, this paper presents the results of an experi-
ment that investigated how well existing clone detection
approaches detect similarity in 109 independently devel-
oped variations of the same functionality. Strikingly, ex-
isting clone detection approaches did not achieve a recall
of more than 1% in this experiment although they were
run with a very unrestrictive configuration that would yield
far too many false positives in practice. Furthermore, we
used manual reviews of an open source system to iden-
tify if behaviorally similar code that does not result from
copy&paste occurs in real world software. This investiga-
tion provides a strong indication that this type of redun-
dancy occurs and, indeed, appears to be problematic for
software maintenance.

Research Problem While clone detection is a proven ap-
proach to detect copy&pasted code, it is unclear in how far
clone detection can be used to detect code that is behav-
iorally similar but not the result of copy&paste. Conse-
quently, we currently do not know the recall of clone de-
tection approaches with respect to similar code in general,
i. e., not limited to copy&paste.

Contribution We extend the existing empirical know-
ledge with an experiment that demonstrates that behav-
iorally similar code of independent origin is unlikely to be
representationally similar. With this, we show that exist-
ing clone detection approaches are ill-suited to detect code
that is behaviorally similar but has been developed indepen-
dently. We illustrate the relevancy of this shortcoming with
a case study in which we used manual reviews to identify
behaviorally similar code in an open source system.

2. Notions of Similarity

In this section we differentiate between representational
and behavioral similarity of code. To the best of our know-
ledge, neither clone detection, nor other research areas
concerned with program equivalence (including program
schemas [8], refactoring [21] and model checking [4]) pro-
vide suitable definitions that can serve as a crisp separation
criterion between the two. Hence, we retreat to a more in-
formal but also more intuitive description here.

2.1. Program-Representation-based Similarity

Numerous clone detection approaches have been sug-
gested [16,24]. All of them statically search a suitable pro-
gram representation for similar parts. Amongst other things,
they differ in the program representation they work on and
the search algorithms they employ. Consequently, each ap-
proach has a different notion of similarity between the code
fragments it can detect as clones. We classify them by the
type of behavior-invariant variation they can compensate
when recognizing equivalent code fragments and by the dif-
ferences they tolerate between similar code fragments.

Text-based approaches detect clones that are equal on
the character level. Token-based approaches can perform
token-based filtering and normalization. They are thus ro-
bust against reformatting, documentation changes or renam-
ing of variables, classes or methods. AST-based approaches
can perform grammar-level normalization and are thus fur-
thermore robust against differences in optional keywords or
parentheses. PDG-based approaches are somewhat inde-
pendent of statement order and are thus robust against re-
ordering of commutative statements. In a nutshell, existing
approaches exhibit varying degrees of robustness against
changes to duplicated code that do not change its behavior.

Some approaches also tolerate differences between code
fragments that change behavior. Most approaches employ
some normalization that removes or replaces special tokens
and can make code that exhibits different behavior look
equivalent to the detection algorithm. Moreover, several ap-
proaches compute characteristic vectors for code fragments
and use a distance threshold between vectors to identify
clones. Depending on the approach, characteristic vectors
are computed from metrics [15,19] or AST fragments [3,9].
Furthermore, ConQAT [13] detects code fragments that dif-
fer up to an absolute or relative edit distance as clones.

In a nutshell, notions of representational similarity as
employed by state of the art clone detection approaches dif-
fer in the types of behavior-invariant changes they can com-
pensate and the amount of further deviation they allow be-
tween code fragments. The amount of deviation that can
be tolerated in practice is however severely limited by the
amount of false positives it produces.

int x, y, z;

Z = X%V, z = 0;

while (x > 0) {
zZ +=y;
X —= 1;

}

while (x < 0) {
z —=y;
X += 1;

}

Figure 1. Code that is behaviorally equal but
not representationally similar.

2.2. Behavioral Similarity

In contrast to a purely syntactical definition of similar-
ity, we can also look at code in terms of I/O behavior. For
a piece of code (i. e., a sequence of statements) we call all
variables written by this code its output variables and all
variables which are read and do have an impact on the out-
puts its input variables. Each of the variables has a type
which is uniquely determined from the context of the code.
We can then interpret this code as a function from valuations
of input variables to valuations of output variables, which is
trivially state-less (and thus side-effect free), as we captured
all global variables in the input and output variables.

We call two pieces of code behaviorally equal, iff they
have the same sets of input and output variables (modulo
renaming) and are equal with respect to their function inter-
pretation. So, for each input valuation they have to produce
exactly the same outputs. An example of code that is be-
haviorally equal but not representationally similar is shown
in Figure 1.

For practical purposes often not only strictly equal pieces
of code are relevant, but also similar ones. We call such sim-
ilar code a simion. Simions are behaviorally similar code
fragments where behavioral similarity is defined w.r.t. in-
put/output behavior.

As we are interested in their (semi-) automatic detec-
tion, the kind of differences tolerated between simions de-
pends both on the task to perform (e. g., removal of redun-
dant code) and the capabilities of the detection algorithm
used. One definition would be to allow different outputs for
a bounded number of inputs. This would capture code with
isolated differences (e. g., errors), for example in boundary
cases. Another one could tolerate systematic differences,
such as different return values in case of errors, or the infa-
mous “off by one” errors.

2.3. Simion versus Clone

There is no single, precise and agreed-upon definition
of the term “clone” in the clone detection community

[16,24-26]. Instead, many different definitions of the term
“clone” have been proposed [16,24]. However, most of
them denote a common origin of the cloned code frag-
ments [25], as is also the case in biology. In this paper,
however, we want to investigate code similarities indepen-
dent of their mode of creation. Using a term that in most of
its definitions inside and outside of the clone detection com-
munity implies duplication from a single ancestor as a mode
of creation is hence counter-intuitive. We thus deliberately
introduce the term “simion” to avoid confusion.

For the sake of clarity, we relate the term to those defini-
tions of “clone” that are most closely related.

Accidental clones denote code fragments that have not
been created by copy&paste [1]. Their similar-
ity results typically from constraints or interaction-
protocols imposed by the same libraries or APIs they
use. However, while they are similar w.r.t. those con-
straints or protocols, they need not be similar on the
behavioral level'.

Semantic clones denote code fragments whose program
dependence graph fragments are isomorphic [7]. Since
the program dependence graphs are abstractions of the
program semantics, and thus do not capture them pre-
cisely, they can, but need not have similar behavior.

Type-4 clones as defined by [24] are comparable to
simions. However, we prefer a term that does not in-
clude the word “clone” as this implies that one similar
instance is derived from another which is not the case
if they have been developed independently.

3. Study description

In order to gain a better understanding of the nature of
simions, we use a study design with 3 research questions
that guide the investigation.

3.1. Research questions

The underlying question we analyze is how syntactically
different behaviorally similar code of independent origin re-
ally is. In order to investigate this, we answer the following
3 more detailed research questions.

RQ 1 How successfully can existing clone detection tools
detect simions that do not result from copy&paste?

Multiple clone detectors exist that search for similar pro-
gram representation to detect similar code. The first ques-
tion we need to answer is how well these tools are able to
detect simions that have not been created by copy&paste.
If existing detectors perform well, no novel detection tools
need to be developed.

'In other words, even though the code of two UI dialogs looks similar in
parts since the same widget toolkit is used, the dialogs differ fundamentally
in their visual appearance and behavior.

RQ 2 Is program-representation-similarity-based clone
detection in principle suited to detect simions that do not
result from copy&paste?

Having established that simions are often too syntacti-
cally different to be detected by existing clone detectors,
we need to understand whether the limitations reside in the
tools or in the principles. If the problems reside in the tools
but the approaches themselves are suitable, no fundamen-
tally new approaches need to be developed.

RQ 3 Do simions that do not result from copy&paste occur
in practice?

The third question we address is whether simions occur
in real world systems. From a software engineering per-
spective, the answer to this question strongly influences the
relevance of suitable detection approaches.

3.2. Searching simions with existing tools (RQ1)

Study objects We created a specification for a simple
email address validator function that was implemented by
computer science students. The function takes a string con-
taining concatenated email addresses as input. It extracts
individual addresses, validates them and returns collections
of valid and invalid email addresses. About 400 undergrad-
uate computer science students were asked to implement
the specification in Java. They were allowed to work in
teams of two or three. Each team only handed in a single
solution. Implementation was done under supervision by
tutors to avoid copy&paste between different teams. Partic-
ipation was voluntary and anonymous to reduce pressure to
copy for participants that did not succeed on their own. Be-
havioral similarity was controlled by a test suite. Students
had access to this test suite while implementing the speci-
fication. To simplify evaluation, students had to enter the
implementation into a single file.

We received 156 implementations of the specification.
Of those, 109 compiled and passed our test suite. They were
taken as study objects. Since all objects pass our test suite,
they are known to exhibit equal output behavior for the test
inputs. Output behavior for inputs not included in the test
suite can vary. Figure 2 displays the size distribution of
the study objects (import statements are not counted). The
shortest implementation comprises 8, the longest 55 state-
ments. In Figure 3 the study objects are also categorized
by nesting depth, i. e., the maximal depth of curly braces in
the Java code, and McCabe’s cyclomatic complexity [20].
These metrics, which both measure certain aspects of the
control flow of a program, already separate the study objects
quite strongly, with the two largest clusters having size 19
and 12. When looking for implementations that are struc-
turally the same, it can be expected that these give the same
values for both metrics and thus the search could be lim-
ited to clusters with the same metric values (denoted by the
bubbles in the diagram).

Number of objects
o
T
L

M MHH%W 11

0 10 20 30 40 50 60
Number of statements

Figure 2. Size distribution of the study ob-
jects.

67 . L]
£5 @00ccos o . .
f0)
a
-84— *o.o..-.. .
834 -@@e -

2 1 . e

1 T T T

0 10 20 30 40

Cyclomatic Complexity

Figure 3. Study objects plotted by nesting
depth and cyclomatic complexity. The area
of each bubble is proportional to the number
of study objects.

Study design To answer RQ1, we need to determine the
recall of existing clone detectors when applied to the study
objects. We denote two objects that share a clone relation-
ship as a clone pair. Since we know all study objects to be
behaviorally similar, we expect an ideal detector to identify
each pair of study objects as clones. For our study, the recall
is thus the ratio of detected clone pairs w.r.t. the number of
all pairs. We compute the full clone recall and the partial
clone recall. For the full clone recall, two objects must be
complete clones of each other to form a clone pair. For the
partial clone recall, it is sufficient if two objects share any
clone (that does not need to cover them entirely) to form a
clone pair. We included the partial clone recall, since even
partial matches of simions could be useful in practice.

Procedure We chose ConQAT [12]> and DECKARD [9]
as state-of-the-art token-based and AST-based clone detec-

2The “CloneDetective” from the title of [12] is now part of ConQAT.

tors. To separate clones between study objects from clones
inside study objects, all clone groups that did not cover at
least two different study objects were filtered from the re-
sults. The parameters used when running the detectors in-
fluence the detection results. Especially the minimal length
parameter strongly impacts precision and recall. To ensure
that we do not hereby miss relevant clones, we chose a very
small minimal length threshold of 5 statements for Con-
QAT. To put this into perspective: when using ConQAT in
practice [5, 13], we use thresholds between 10 and 15 state-
ments for minimal clone length. Obviously such a small
threshold can result in high false positive rates and thus low
precision of the results. However, this affects the interpre-
tation of the results w.r.t. the research question in a single
direction only—if we fail to detect a significant number of
clones even in presence of false positives, we cannot expect
to detect more clones with more conservative parameter set-
tings.

Results We executed ConQAT in three different config-
urations to detect clones of type® 1, types 1&2 and types
1-3. For type 3 clone detection, an edit distance of 33%
of the length of the clone was accepted*. Partial clone re-
call was computed as the ratio of the number of pairs of
study objects that share any clone, w.r.t. the number of all
pairs. The full clone recall was computed as the ratio of
the number of pairs of study objects that share clones that
cover at least 90% of their statements w.r.t. to the number
of all pairs. The number of all pairs is the number of edges
in the complete undirected graph of size 109, namely 5778.
DECKARD was executed with minimal clone length of 23
tokens (corresponding to 5 statements for an average token
number of 4.5 per statement for the study objects), a stride
of 0 and a similarity of 1 for detection of type 1&2 clones
and 0.95 for detection of type 3 clones. Again, these values
are a lot less restrictive than the values suggested in [17].
Since the version of DECKARD used for the study cannot
process Java 1.5, it could not be executed on all 109 study
objects. Instead, it was executed on 50 study objects that
could be made Java 1.4 compatible by removal of type pa-
rameters’. For the 50 study objects, the number of all pairs
is 1225. The results are depicted in table 1.

As can be expected, the recall values for clones of type
1-3 are higher than for type 1 or type 1&2 clones. Further-
more, the AST-based approach yields slightly higher values.
This is not surprising since it performs additional normal-
ization. However, even though we used very tolerant pa-

3Clone types classify the differences between clones: type 1 is lim-
ited to differences in layout and comments, type 2 further allows identifier
renames and type 3 in addition allows statement changes, additions or dele-
tions. Refer to [16] for details.

4As for minimal clone length, this value is more tolerant than what we
typically employ in industrial settings [13].

5The remaining 59 study objects used additional post Java 1.4 features
and were excluded from the study

Table 1. Results from clone detection

Detector Detected Partial Full
Clone Types | Clone Recall | Clone Recall

ConQAT 1 0.4% 0.0%

ConQAT 1&2 2.3% 0.0%

ConQAT 1-3 3.2% 0.1%

DECKARD 1&2 5.1% 0.1%

DECKARD 1-3 9.7% 0.8%

rameter values for clone detection, which probably result in
a false positive rate that is too high for application in prac-
tice, both partial and full clone recall values are very low.
The best value for full clone recall is below 1%, the best
value for partial clone recall below 10%.

In other words: for two arbitrary study objects, the prob-
ability that any clones are detected between them is below
10%. The probability that they are detected to be full clones
of each other is even below 1%. Given the very tolerant
parameter values used during detection, we cannot expect
these tools to be well suited for the detection of simions
(not created by copy&paste) in real world software.

3.3. Limits of representation-based detection (RQ2)

Having established that existing tools are not well suited
to detect simions, we investigate whether the causes reside
in tool implementations or if their underlying detection ap-
proaches are fundamentally unsuited.

Study objects & design The study for RQ2 is performed
on the 109 implementations of the email address validator
function from RQ1 and comprises two parts. First, we col-
lect differences between study objects. We categorize them
based on their compensability. As stated above, to the best
of our knowledge, there is no established formal boundary
on the capabilities of program-representation-similarity-
based (PRSB) detection approaches. Consequently, instead
of using a formal boundary, we base the categorization on
the capabilities of existing approaches. For that, we con-
sider approaches not only from clone detection, but also
from the related research area of algorithm recognition.
Second, having established and categorized these fac-
tors, we can look beyond the limitations of existing tools
and can determine how well an ideal PRSB clone detection
tool can detect simions. To that end, the differences between
pairs of study objects are rated based on their category. This
is performed by manual inspection. The ratio of pairs that
only contain differences that can be compensated w.r.t. all
pairs is computed. It is an upper bound for the recall PRSB
approaches can in principle achieve on the study objects.

Procedure To keep inspection effort manageable, manual
inspection was carried out on a random sample of study ob-
jects. The sample was generated in such a way, that each

study object occurred at least once and contained 55 pairs.
The study objects of each pair were compared manually and
the differences between them recorded. As a starting point
for the difference categorization, we used the categories of
program variation proposed by Metzger and Wen [22] and
Wills [28]. If the differences in a category can be compen-
sated by any existing clone detection approach or by ex-
isting work from algorithm recognition, we classified it as
within reach of PRSB approaches. Else, we classified the
category as out of reach of PRSB approaches.

Categories of program variation The following list
shows the categorization of differences encountered during
manual inspection of pairs of study objects that were con-
sidered principally within reach of PRSB approaches. Ex-
amples with line number references of the form A-xx and
B-yy refer to study objects A and B in Fig. 4.

Syntactic variation occurs if different concrete syntax
constructs are used to express equivalent abstract syntax,
such as the different statements used to create an empty
string array in lines A-4 and B-4. In addition, it occurs if
the same algorithm is realized in different code fragments
by a different selection of control or binding constructs to
achieve the same purpose. Examples are the implementa-
tion of the empty string checks as one (line B-3) or two if
statements (lines A-3 and A-5) or the optional else branch
in line B-6. Means to compensate syntactic variation in-
clude conversion into intermediate representation and con-
trol flow normalization [22].

Organization variation occurs if the same algorithm is
realized using different partitionings or hierarchies of state-
ments or variables that are used in the computation. In line
B-14 for example, a matcher is created and used directly,
whereas both the matcher and the match result are stored
in local variables in lines A-17-19. Means to (partial) com-
pensation include variable- or procedure-inlining and loop-
and conditional distribution [22].

Generalization comprises differences in the level of
generalization of source code. Types List<String> in line
A-8 and ArrayList<String> in line B-8 are examples of this
category. Means of compensation include replacements of
declarations with the most abstract types, or, in a less accu-
rate fashion, normalization of identifiers.

Delocalization occurs since the order of statements that
are independent of each other can vary arbitrarily between
code fragments. In a clone of study object A for example,
the list initialization in line A-8 could be moved behind line
A-14 without changing the behavior. Delocalization can
i. e., be compensated by search for subgraph isomorphism
as done by PDG-based approaches [16,24].

Unnecessary code comprises statements that do not af-
fect the (relevant) I0-behavior of a code fragment. The
debug statement in line A-14 for example can be removed
without changing the output behavior tested for by the test

1 public String[] validateEmailAddresses (String
addresses , char separator, Set<String>
invalidAddresses) {

if (addresses == null)
return new String [0];

if (addresses.equals(””))
return new String [0];

AN W

8 List<String> valid = new ArrayList<String >();

10 String sep = String.valueOf(separator);
11 if (separator == "\\")
12 sep = "\\\\ "3

13 String [] resultl = addresses.split(sep);
14 System.out. println (Arrays.toString (resultl));

16 for (String adr resultl) {

17 Matcher m = emailPattern.matcher(adr);
18 boolean ergebnis = m.matches();

19 if (ergebnis)

20 valid .add (adr);

21 else

22 invalidAddresses.add(adr);

23}

25 return valid.toArray (new String[0]);

public String/[]

validateEmailAddresses (String
addresses , char separator, Set<String>
invalidAddresses) {

if (addresses == null || addresses.equals(”7)) {
return new String []{}; }

else {
addresses .replace(” 7, 77);
ArrayList<String> validAddresses = new
ArrayList<String >();

StringTokenizer tokenizer = new
StringTokenizer (addresses ,
separator));

String . valueOf (

while (tokenizer . hasMoreTokens ()) {
String i = tokenizer.nextToken () ;
if (this.emailPattern.matcher(i).matches()){
validAddresses .add(i);
} else {
invalidAddresses.add(i);
}
}

return validAddresses.toArray (new String[]{});

Figure 4. Study objects A and B

cases®. Means of compensation include backward slicing

from output variables to identify unnecessary statements.

The following category contains types of program varia-
tion in the study objects that cannot be compensated by ex-
isting clone detection or algorithm recognition approaches.

Different data structure or algorithm: Code frag-
ments use different data structures or algorithms to solve
the same problem. One example for the use of different
data structures encountered in the study objects is the con-
catenation of valid email addresses into a string that is sub-
sequently split, instead of the use of a list. The use of dif-
ferent algorithms is illustrated by the various techniques we
found to split the input string into individual addresses: in
line A-13, a library method on the Java class String is called
that uses regular expressions to split a string into parts. In
line B-10, a StringTokenizer is used for splitting that does
not use regular expressions. To illustrate the amount of vari-
ation that can be found even in a small program, Figures 5-9
depict different ways to implement the splitting. All exam-
ples were found in the study objects.

Inspection Result Of the 55 pairs of study objects in-
spected manually, only 4 did not contain program varia-
tion of category different algorithm or data structure. In
other words, only about 7% of the manually inspected pairs

®Depending on the use case, debug messages can or can not be consid-
ered as part of the output of a function.

contain only program variation that can (in principle) be
compensated. Since this ratio is an upper bound on the re-
call PRSB approaches can in principle achieve, we consider
PRSB approaches poorly suited for detection of simions
that do not result from copy&paste.

3.4. Simions in real world software (RQ3)

RQ1 and RQ2 demonstrated that existing clone detec-
tion approaches are ill-suited to detect simions of indepen-
dent origin. However, if this type of redundancy appears
in real world software, i. e., outside of our experiment, is
still unclear. Lacking a detection tool, we investigated this
question through manual techniques.

Study Objects, Design & Procedure To identify simions
in a real-world system, we pair-reviewed the source code
of the well-known open-source reference manager JabRef”.
Obviously, the identification of simions is a hard problem as
it requires full comprehension of the source code. As we did
not know the source code of JabRef before, we limited our
review to about 6,000 LOC? that contain utility functions
that are mainly independent of JabRef’s domain. Examples
are functions that deal with string tokenization or with file
system access. In this review, we did not only analyze if re-
viewed parts themselves contain simions but also took into

Thttp://jabref.sourceforge.net/
8Lines of code

21
22
23

String [] adresses2 = addresses.split(Pattern.
quote (String . valueOf(separator)));

Figure 5. Splitting with java.lang.String.split()

ArrayList<String> validEmails = new ArrayList<

String >();
StringTokenizer st = new StringTokenizer (
addresses , Character.toString(separator));

while (st.hasMoreTokens()) {
String tmp = st.nextToken();
validEmails .add (tmp);

}

Figure 6. Splitting with java.util.StringTokenizer

List<String> result = new ArrayList<String >();
int z = 0;
for (int i=0; i<addresses.length(); i++) {
if (i==addresses.length()—1) {
result.add(addresses.substring(z, i+1));

if (addresses.charAt(i)==separator) {
result.add(addresses.substring(z, i));
z=i+1;
}
}

Figure 7. Splitting with custom algorithm 1

List<String> curAddrs = new ArrayList<String >();
String buffer = 77;
for (int i=0; i<addresses.length(); i++) {

if (addresses.charAt(i) != separator) {
buffer += addresses.charAt(i);

} else {
curAddrs.add(buffer);
buffer = 77,

}

}
curAddrs.add(buffer);

Figure 8. Splitting with custom algorithm 2

List<String> emailListe= new ArrayList<String >();
int trenneralt = O;
while (addresses.indexOf(separator ,trenneralt) !=
- {
int trennerneu = addresses.indexOf(separator ,
trenneralt);
emailListe .add(addresses.substring (trenneralt ,
trennerneu)) ;
trenneralt = trennerneu + 1;

Figure 9. Splitting with custom algorithm 3

account code that is behaviorally similar to library code as
provided, for example, by the Apache Commons Library®.
Such findings identify missed reuse opportunities.

Results Using manual reviews, we found multiple
simions within JabRef’s utility functions. An example is
the function nCase() in the Util class that converts the first
character of a string to upper case. The same functionality
is also provided by class CaseChanger that allows to apply
different strategies for changing the case of letters to strings.

Even more interesting, we found a large number of utility
functions that are already provided by well-known libraries
like the Apache Commons. For example, the above method
is also provided by method capitalize() in the Apache Com-
mons class StringUtils. The class Util, in particular, ex-
hibits a high number of simions. It has 2,700 LOC and
86 utility methods of which 52 are not related to JabRef’s
domain but deal with strings, files or other data structures
that are common in most programs. Of these 52 methods
32 exhibit, at least partly, a behavioral similarity to other
methods within JabRef or to functionality provided by the
Apache Commons library. Eleven methods are, in fact, be-
haviorally equivalent to code provided by Apache. Exam-
ples are methods that wrap strings at line boundaries or a
method to obtain the extension of a filename.

Many of these methods in JabRef exhibit suboptimal im-
plementations or even defects. For example, some of the
string-related functions use a platform-specific line sepa-
rator instead of the platform-independent one provided by
Java. In another case, the escaping of a string to be used
safely within HTML is done by escaping each character in-
stead of using the more elegant functionality provided by
Apache’s StringEscapeUtils class. A drastic example is the
JabRef class ErrorConsole.TeeStream that provides multi-
plexing functionality for streams and could be mostly re-
placed by Apache’s class TeeOutputStream. The imple-
mentation provided by JabRef has a defect as it fails to
close one of the multiplexed streams. Another example is
class BrowserLauncher that executes a file system process
without making sure that the standard-out and standard-
error streams of the process are drained. In practice, this
leads to a deadlock if the amount of characters written to
these streams exceeds the capacity of the operating system
buffers. Again, the problem could have been avoided by
using Apache’s class DefaultExecutor.

While the manual review of JabRef is not representa-
tive, it indicates that real-world programs, indeed, exhibit
simions. While some of the simions are also representation-
ally similar, the majority could not be identified with clone
detection tools. This applies in particular for the simions
that JabRef shares with the Apache Commons as the code
has been developed by different organizations. A central in-

“http://commons.apache.org/

sight of our manual inspection was, that simions often rep-
resent missed reuse opportunities that do not only increase
development efforts but also introduce defects.

4. Threats to Validity

This section discusses how we mitigated threats to validity.

Construct Validity For RQ1, we did not measure the im-
pact of the parameters used for detection on precision. This
has two reasons. (1) precision measured on the study ob-
jects, which are known to be behaviorally similar, is un-
likely to be transferable to real world software, where we
cannot expect the same amount of similarity. Precision
measures would thus have to be repeated on further sys-
tems, still with questionable transferability beyond the sys-
tems under study. (2) Measuring precision through manual
assessments is already difficult in general [27]. During the
course of the study, we found it to be infeasible for very
small clones (e. g., of size below 4 statements) due to low
inter-rater reliability. Instead, we chose very tolerant pa-
rameter values that, while likely to result in low precision,
are unlikely to reduce recall. However, this strategy has a
single sided effect on the results of the study in that it merely
increases the probability to detect clones. It thus does not
affect the validity of the results that existing tools are poorly
suited to detect simions.

Internal Validity For RQ2, we classified categories of
program variation according to whether they are in prin-
ciple within reach of PRSB approaches. Misclassification
can impact the results. We handled this threat by choosing
a conservative classification strategy. Categories that can
only partly be handled (e. g., due to the use of heuristics that
cannot guarantee completeness or high computation com-
plexity that could be prohibitively expensive in practice)
were rated as within reach of PRSB approaches. In addi-
tion, differences between the study objects that stemmed
from differences in their behavior that were not detected by
our test suite were ignored. This conservative strategy thus
increases the probability to consider PRSB approaches as
suited for the simion detection problem. It does, however,
not impact the validity of the result that PRSB approaches
are poorly suited for the simion detection problem.

Several factors can lead to less program variation among
the study objects than could typically be encountered in real
world software: (1) all students had access to the same test
suite, (2) the signature of the validator function, including
its types, was specified, (3) teams could ask tutors for help.
However, all these factors only increase our chances of find-
ing clones and thus do not invalidate the results.

External Validity We chose two state-of-the-art clone de-
tectors for the study. Some detector we did not try might
perform better. However, given the diversity and amount of
program variation we discovered among the study objects,

we do not expect any existing clone detector to perform sub-
stantially better, as would be required to invalidate our con-
clusions. The results for RQ?2 illustrate that this is also valid
for PDG-based detectors'?. We do not claim transferability
of the actual numbers (e. g., recall measures) we measured
on the study objects beyond the study. However, since the
study objects were relatively simple compared to real world
software, we do expect it to exhibit less program variation.
On the contrary, we would expect program variation to be
even larger for real world software, due to differences in
conventions and practices between different teams and do-
mains. Regarding the existence of simions in real- world
programs that are not the result of copy&paste (RQ3), our
approach can only provide an indication. In particular, it is
too early to reason about the defect proneness of the missed
reuse opportunities represented by simions.

5. Discussion

In the previous sections we explored the limits of cur-
rent clone detection tools and also of their underlying ap-
proaches. In our experiment clone detection tools achieve
a recall of less than 1% when analyzing behaviorally simi-
lar but independently developed code (RQ1). While it could
have been expected that existing clone detection approaches
have rather limited capabilities for finding simions, the dra-
matically low recall is nevertheless surprising. Moreover,
the result of RQ2 shows that only a certain class of simions,
those that are representationally similar modulo normaliza-
tion, can be found with current clone detection approaches.
Hence, we are inclined to disagree with [24] that states
that “[...] attempts can be made to detect semantic clones
[simions] by applying extensive and intelligent normaliza-
tions to the code.”.

Furthermore, RQ1 demonstrated that independent pro-
grammers do not tend to create representationally similar
code when facing the same implementation problem. Thus,
we would expect to find simions “in the wild”” which are not
representationally similar and thus not detectable by current
tools. RQ3 provides first indications for this fact. These re-
sults are also backed up by the study in [10], which mined
a huge number of simions from the Linux kernel sources
from which at least half of them where not representation-
ally similar. Results that point in the same direction are also
presented by Kawrykow and Robillard that report on signif-
icant amounts of reimplemented API methods they found in
Java systems [14].

The simions inspected for RQ3 also confirmed our ex-
pectations that reuse of existing (library) functions often not
only reduces implementation efforts but also the number of
bugs. To provide some further indication, we used Google
Code Search!! to identify other Java programs that do not

10 Also, we are not aware of an available PDG-based detector for Java.
Uhttp://www.google.com/codesearch

reuse Apache’s DefaultExecutor and exhibit the same dead-
lock problem as JabRef that we discovered in RQ3. Strik-
ingly, of the first 10 hits for the search lang:java pro-
cess.waitfor, 6 implementations contain exactly the same
problem as JabRef although only 2 of them appear to be the
result of copy&paste.

These facts indicate the detection of simions to be a prac-
tically relevant problem which is not yet solved by existing
tools. The existing approaches discussed in the next sec-
tion all focus on specific kinds of simions and usually have
false positive rates which are way too large to be practi-
cally applicable. A working simion detector could not only
help in reducing code size by eliminating redundant code,
but also find bugs by including libraries of working code
or bug patterns in the detection. Finally, such a tool would
allow a more quantitative study of the amount and nature
of simions in real-world software projects — something that
could not be performed in this paper and was only partially
done by [10]. So we consider the construction of algorithms
and tools for simion detection a worthwhile and still open
problem.

6. Related Work

First results of this work were published in an early ver-
sion of this paper [11]'2. Other related publications are
summarized in this section.

Clone Detection Comprehensive surveys of existing
program-representation-similarity-based clone detection
approaches is given in the surveys from Koschke [16] and
Roy and Cordy [24]. For the experiment presented in this
paper, the tools ConQAT [12] and DECKARD [9] have
been used, which represent the most up-to-date implemen-
tations of token-based and AST-based clone detection algo-
rithms, respectively.

Simion Detection Multiple authors dealt with the prob-
lem of finding behaviorally similar code, although often
only for a specific kind of similarity.

An early paper on the subject by Marcus and
Maletic [18] deals with the detection of so called high-level
concept clones. The approach is based on reducing code
chunks (usually methods or files) to token sets, and per-
forming latent semantic indexing (LSI) and clustering on
these sets to find parts of code which use the same vocab-
ulary. The paper reports on finding multiple list implemen-
tations in a case study, but does not quantify the number of
clones found or the precision of the approach. Limitations
are identified especially in the case of missing or misleading
comments, as these are included in the clone search.

The work of Kawrykow and Robillard [14] aims at find-
ing methods in a Java program which reimplement func-
tions available in libraries (APIs) used by the program.

12Since at that time not all study objects had been handed in by the
students, the numbers differ between the papers.

Therefore, methods are reduced to the set of classes, meth-
ods, and fields used, which are extracted from the byte-
code, and then matched pairwise to find similar methods.
Additional heuristics are employed to reduce the false pos-
itive rate. Application to ten open source projects identified
405 “imitations” of API methods with an average precision
of 31% (worst precision 4%).

Nguyen et al. [23] apply a graph mining algorithm to
a normalized control/data-flow graph in order to find “us-
age patterns” of objects. The focus of their work is not the
detection of cloning, but rather of similar but inconsistent
patterns, which hint at bugs. The precision for this process
is about 20%"3.

The paper [10] by Jiang et al. introduces an approach
that can be summarized by dynamic equivalence checking.
The basic idea is, that if two functions are different they
will return different results on the same random input with
high probability. Their tool, called EQMINER, detects func-
tionally equivalent functions in C code dynamically by ex-
ecuting them on random inputs. Using this tool, they find
32,996 clusters of similar code in a subset of about 2.8 mil-
lion lines of the Linux kernel. Using their clone detector
DECKARD they report that about 58% of the behaviorally
similar code discovered is syntactically different. Since no
systematic inspection of a sample of the clusters is reported,
no precision numbers are available.

While the papers listed here propose new detection ap-
proaches, this work focuses on the limitations of existing
approaches, providing rationale for the development of new
algorithms for finding simions.

Studies on similarity of independently developed code
In [6], Eckhardt et al. report on an experiment that evaluates
n-version programming as a method of introducing fault-
tolerance into software. For that purpose, 27 implementa-
tions of the same specification were created independently
by different student groups. On them, behavioral similarity,
namely the independence of programming errors, was eval-
vated. In contrast, this work investigates representational
similarity of independently developed software.

In [1], Al-Ekram et al. search for cloning between differ-
ent open-source systems using a token-based clone detector.
They report that, to their surprise, they found little behav-
iorally similar code across different systems, although the
systems offered related functionality. The clones they did
find were typically in areas where the use of common APIs
dictated a certain representation, thereby limiting program
variation. They thus give further indication that (except in
presence of canonizing factors such as common APIs), ex-
isting clone detectors are ill-suited to detect simions that
were not created by copy&paste.

13When including “code that could be improved for readability and un-
derstandability” as flaws, the paper reports near 40% precision.

Algorithm recognition The goal of algorithm recogni-
tion [2,22,28] is to automatically recognize different forms
of a known algorithm in source code. Just as clone detec-
tion, algorithm recognition has to cope with program vari-
ation. The categorizations of program variation from [28]
and [22] provided valuable input for this paper. The most
fundamental difference w.r.t. similar code detection is that
for algorithm recognition as proposed by [22,28], the algo-
rithms to be recognized need to be known in advance.

7. Conclusion

This paper sheds light on the differences between syn-
tactical/representational and semantic/behavioral similarity
of code and the detectability of these similarities. With a
controlled empirical experiment we underpin the common
intuition of the existence of behaviorally similar redundant
code which can not be found automatically by existing ap-
proaches currently in use by the clone detection commu-
nity. Due to the impact of redundancy on maintenance ef-
forts and program correctness, we consider the reliable and
scalable automatic detection of simions a relevant open re-
search topic. Our future work will investigate in how far dy-
namic approaches can be applied to the detection of simions
in practice.

Acknowledgments The authors want to thank the stu-
dents and tutors for their efforts involved in the creation of
the study objects and the anonymous reviewers and partic-
ipants of IWSC 2009 for helpful comments on a precur-
sory position paper on this topic [11]. In addition, the au-
thors would like to thank Ira Baxter, Moritz Beller, Man-
fred Broy, Raimar Falke, Nils Goede, Jan Harder, Rainer
Koschke, Jens Krinke, Tobias Nipkow and Rebecca Tiarks
for helpful advice. Furthermore, the authors are grateful to
Lingxiao Jiang for providing DECKARD and giving help-
ful advice on its use. This work has partially been supported
by the German Federal Ministry of Education and Research
(BMBF) in the project Quamoco (01 IS 08023B) and by a
Google Research Award.

References

[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning
by accident: an empirical study of source code cloning
across software systems. In Proc of ESEM’05, 2005.

C. Alias and D. Barthou. Algorithm recognition based on
demand-driven data-flow analysis. In WCRE 03, 2003.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier.
Clone detection using abstract syntax trees. In ICSM’98,
1998.

E. Clarke, O. Grumberg, and D. Peled. Model checking.
Springer, 1999.

F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M.
y Parareda, and M. Pizka. Tool support for continuous qual-
ity control. IEEE Software, 25(5):60-67, 2008.

(2]
(3]

(4]
(5]

10

(6]

(7]
(8]
(9]

(10]
(11]

[12]

[13]
(14]

[15]

[16]

(17]
(18]

(19]

(20]
(21]
(22]

(23]

[24]

[25]

(26]

(27]

(28]

D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee,
D. F. McAllister, M. A. Vouk, and J. J. P. Kelly. An exper-
imental evaluation of software redundancy as a strategy for

improving reliability. /EEE TSE, 17, 1991.

M. Gabel, L. Jiang, and Z. Su. Scalable detection of seman-
tic clones. In ICSE ’08. ACM, 2008.

L. I. Ianov. On the equivalence and transformation of pro-

gram schemes. Commun. ACM, 1958.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD:
Scalable and accurate tree-based detection of code clones.
In ICSE’07, 2007.

L. Jiang and Z. Su. Automatic mining of functionally equiv-
alent code fragments via random testing. In ISSTA’09, 2009.
E. Juergens, F. Deissenboeck, and B. Hummel. Clone detec-
tion beyond copy & paste. In IWSC’09, 2009.

E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetec-
tive — a workbench for clone detection research. In /CSE’09,
2009.

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In ICSE 09, 2009.

D. Kawrykow and M. Robillard. Improving API usage
through detection of redundant code. In ASE’09, 2009.

K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler, and
M. Bernstein. Pattern matching for clone and concept de-
tection, pages 77-108. 1996.

R. Koschke. Survey of research on software clones. In Du-
plication, Redundancy, and Similarity in Software. Dagstuhl
Seminar Proceedings, 2007.

E. C. Lingxiao Jiang, Zhendong Su. Context-based detection
of clone-related bugs. In ESEC/FSE’07, 2007.

A. Marcus and J. I. Maletic. Identification of high-level con-
cept clones in source code. In ASE 01, 2001.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In /ICSM ’96, 1996.

T. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, SE-2(4):308-320, 1976.

T. Mens and T. Tourwé. A survey of software refactoring.
IEEE TSE, 2004.

R. Metzger and Z. Wen. Automatic algorithm recognition
and replacement. MIT Press, 2000.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi,
and T. N. Nguyen. Graph-based mining of multiple object
usage patterns. In FSE’09, 2009.

C. K. Roy and J. R. Cordy. A survey on software clone de-
tection research. Technical Report 541, Queen’s University
at Kingston, 2007.

A. Walenstein. Code clones: Reconsidering terminology.
In Duplication, Redundancy, and Similarity in Software,
Dagstuhl Seminar Proceedings, 2007.

A. Walenstein, M. El-Ramly, J. R. Cordy, W. Evans,
K. Mahdavi, M. Pizka, G. Ramalingam, J. W. von Guden-
berg, and T. Kamiya. Similarity in programs. In Duplication,
Redundancy, and Similarity in Software, Dagstuhl Seminar
Proceedings, 2007.

A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia.
Problems creating task-relevant clone detection reference
data. In WCRE ’03, 2003.

L. Wills. Flexible control for program recognition.
WCRE’93, 1993.

In

