
Modeling Clone Evolution

Jan Harder, Nils Göde
University of Bremen, Germany

http://www.informatik.uni-bremen.de/st/

{harder, nils}@informatik.uni-bremen.de

Abstract

During the maintenance of a program, not only the
source code but also the code clones contained in it
evolve. Some recent studies focused on detecting pat-
terns in the history of code clones to evaluate the harm-
fulness of clones.

Since clone evolution is a rather novel field of study,
there is still need for more comprehensive models and
improved methodologies. Current approaches are lim-
ited to detecting only a small specialized set of patterns
in a clone’s evolution, they generally lack scalability
and the way they collect data has to be discussed.

We provide an overview of existing methods to model
clone evolution by describing the patterns that can be
observed and the respective detection procedure. We
discuss their shortcomings and point out open questions
towards more detailed models of clone evolution.

1 Introduction

Passages of duplicated source code — clones — have
an effect on the maintainability of a software system.
Empirical research suggests that some clones require
higher attention than others [4, 5, 6, 7]. To evaluate
the harmfulness of a clone, it is not sufficient to ob-
serve its occurrence in a single version of a program.
Possible negative effects on the quality of the code,
like increased maintenance costs or a higher likelihood
of bugs, can only be observed when clones are traced
over time and correlated to other parameters from the
project’s history (e.g. faults).

Several recent studies investigated clones with re-
gard to their evolution. They build models of clone
evolution that allow for the investigation of specific
properties of a clone. While giving important insights,
their results do not add up to a concluding view on the
effects of clones, yet. This might be due to the studies
set up and the way they obtain and evaluate their data.

So far, their scope has been limited to smaller systems
or few versions of the software and no model has been
proposed that aims to capture the entire version his-
tory of a clone.

Up to now, clone evolution research was mainly di-
rected to retrospective studies that investigated the
past evolution of software systems. Another applica-
tion that could greatly benefit from clone evolution
data is clone management. When a clone’s evolution
is tracked as it happens, developers could be notified
of inconsistent changes to clones and predictions of a
clone’s future severity could be made. This means that
clone management could greatly benefit by models of
clone evolution that capture all properties and events in
the history of clones that could indicate future prob-
lems before they arise. This calls for more detailed
models of clone evolution but at the same time more
scalable techniques to compute them.

Contributions. In this paper we will outline the
relevant studies on clone evolution in Section 2. We
discuss their shortcomings and state open issues to-
wards more comprehensive models of clone evolution
in Section 3. Section 4 concludes.

2 Modeling Clone Evolution

Several approaches to model a clone’s evolution were
proposed in the past. In this section we will give an
overview of the models they define and their methodol-
ogy to compute them. We focus on those studies that
actually track clones across versions. Methods that
quantify properties of cloned code but do not follow
individual clones are not in the scope of this paper.

Note, that the field of code clone research has not
employed a consistent terminology, yet. We use the fol-
lowing terms throughout this paper: A clone fragment
is a passage of source code, that is sufficiently similar
to at least one other passage of source code. The mea-
sure of similarity depends on the specific scenario and
clone detection method used. Each fragment belongs



to a clone class. Such a class contains all fragments
that are sufficiently similar to each other. We will also
refer to versions of source code, that we define as a
snapshot of a program’s source code at a given point
of time.

All approaches that model the evolution of clones
need to deal with two major challenges: (1) The clone
fragments from one version vi must be mapped to the
fragments of the following version vi+1; and (2) clone
evolution patterns must be defined and calculated upon
the cross-version correlation of the clone fragments or
clone classes.

The first study of this kind was carried out by Kim
et al. [5]. They implement the fragment mapping in
two functions: One calculates the location overlapping
of two fragments. Therefore the positions of the frag-
ments in vi+1 are realigned to their former positions
in vi using diff. Then the relative proportion of the
overlapping region is computed as a score. The other
metric rates the textual similarity of both fragments
as the ratio of duplicated code between them. For the
evolution of clone classes they define evolution patterns
as rules in first order logic. Predicates are the mem-
bership of fragments in clone classes (which are sets of
fragments) as well as the two metrics mentioned be-
fore. That way they formulate five essential clone class
evolution patterns that we will explain briefly. The
Same pattern denotes that all fragments of a class re-
mained the same and no change took place. Add de-
scribes the case where at least one fragment appears
in a clone class that it was not part of in the previous
version. Its counterpart Subtract models the case that
at least one fragment vanished from a clone class. Two
further patterns Consistent Change and Inconsistent
Change are introduced to model changes to the frag-
ments’ lexical structure. A change is consistent if all
fragments of the clone class have changed in the same
way. It is inconsistent if fragments of the clone class
have changed differently. This includes the case where
only some fragments were changed while others where
not. Each detected pattern connects a clone class from
vi and vi+1. While a clone class is allowed to have more
than one successor, it only has one predecessor in gen-
eral, being the one with the best location overlapping
(there can be two successors in the case of an ambi-
guity). Together the clone classes and their mappings
form a graph called clone genealogy that describes the
evolution of clone classes. Kim et al. extracted such
genealogies for two small Java systems (dnsjava and
carol) to investigate the lifetime of clone classes. It
turned out that many clone classes are short-lived and
therefore aggressive removal is not practical as a uni-
versal strategy for clone management. At the same

time many of the long-living clone classes seem to re-
main in the source code because removal is not possi-
ble due to limitations of the programming language or
other constraints.

Aversano et al. picked up Kim’s idea of evolution
patterns, but chose a semi-automated approach to de-
tect them [1]. They first detect clone classes in a single
version and then extract all modification transactions
(MT), that changed the cloned code, from the projects
version control system. The MTs are calculated upon
CVS commit operations using a sliding window tech-
nique. Each of them is regarded as a version step.
Furthermore they only consider clone classes that are
changed inconsistently in at least one MT and whose
fragments scatter at least across two different files.
Upon these data a refined subset of Kim’s patterns is
detected. Only consistent and inconsistent changes are
taken into account. The inconsistent change pattern
is further specialized into Independent Evolution and
Late Propagation. Evolving independently means that
fragments that belonged to the same class are changed
inconsistently and further develop independently. In
a Late Propagation two fragments belong to the same
class, are then changed inconsistently so that they ap-
pear in different classes (or not at all) for some time
and then appear again together in the same class. This
phenomenon is believed to be a typical risk related to
cloning. A programmer might forget to change one
or more fragments of a class and performs the missing
changes belatedly after an error occurred. It is also pos-
sible that changes on some fragments were not forgot-
ten but performed differently by accident. The pattern
detection was left to human reviewers who inspected all
classes and the corresponding MTs. In two case studies
on ArgoUML and dnsjava they conclude that develop-
ers carry out changes consistently in most cases. A
considerable amount of changes falls into the Indepen-
dent Evolution category, while Late Propagations are
much more infrequent. They also conclude that clones
at a higher granularity (class clones vs. method clones)
more often change consistently.

An approach, that uses information from an abstract
syntax tree (AST) was proposed by Bakota et al. [2].
Before matching fragments across versions, they elimi-
nate all possible matches of fragments whose AST sub-
tree representation has a different type of root node.
For each remaining pair of fragments, they calculate a
similarity metric that is an aggregation of five weighted
metric values. These are (in descending priority): (1)
the lexical similarity of the fragments’ source code,
(2) textual similarity of the first named node found
in the fragments’ AST, (3) the order in which the frag-
ments were reported, (4) the relative position within



the enclosing syntactic unit and (5) the similarity of the
names of the files containing the fragments. All textual
similarity measures base on the Levenshtein distance.
Metric (3) is the numerical difference of the position in
the clone fragment list of the class the fragments belong
to, (4) calculates a distance between the two AST sub-
trees. For all remaining fragment pairs the similarity
metric is calculated and for each fragment in vi the best
match in vj (i < j) is chosen as descendant. This leads
to a partial injective mapping between the fragments
of the examined versions. That is, each fragment has
at most one descendant and predecessor. As fragments
can appear or vanish from one version to another, not
all of them are mapped. Based upon the mapping, the
authors define four evolution patterns which they call
clone smells. Bakota et al. do not aim to classify all
changes to clone classes. Instead they try to identify
changes of cloned fragments that suggest a negative
impact on code quality. Such a smell is reported when-
ever a clone fragment vanishes or occurs for the first
time. Moving and migrating clone fragments are more
complex smells. These model modifications to the par-
titioning of fragments into clone classes across versions.
Fragments are said to move when they appear in a class
together with different fragments compared to the pre-
vious version. A migration can be compared to Aver-
sano’s Late Propagation. It is modeled as the case that
two fragments appear in the same clone class in one
version, then they do not appear in the same class for
at least one later version, just to appear again together
in one class. Bakota et al. applied their methodology
on twelve versions of Firefox with a monthly stepping
and extracted 60 smells out of which 28 have been rated
as false positives. Manual inspection showed that 5
smells could be related to possible bugs and 6 to con-
firmed bugs. Further 8 smells resulted from bugfixes
that corrected inconsistent changes made in earlier ver-
sions than the ones inspected by the study.

Krinke conducted a study on consistent and incon-
sistent changes to clone classes [6]. Like Aversano et al.
he studied changes to the clones of one representative
version. First he employs a pretty printer on the source
code of all versions and detects the clone classes in vi

using Simian. He then collects the changes between
a pair of versions vi and vj (i < j) where diff serves
him as a tool. From all changes, those that do not
overlap clone fragments are discarded. On this basis,
consistent and inconsistent changes can be identified
by comparing the changes applied to the fragments
of one class. When these equal, a consistent change
took place between the two versions. If they differ or
if some fragments were changed but others were not,
the change was inconsistent. Krinke uses this method-

ology to evaluate how often consistent and inconsis-
tent changes happen. He further investigated whether
cases exist where inconsistent changes turn to consis-
tent ones, when the interval between the versions is
enlarged (this corresponds to the late propagation pat-
tern). He concludes that the number of consistent and
inconsistent changes is about the same for any version
interval. Late propagations rarely were observed in the
systems he investigated.

3 Discussion

The studies we presented pioneered the field of mod-
els for clone evolution. Many open questions on how
evolution should be captured, how further conclusions
on clone evolution can be made an how future require-
ments to such models can be met remain. In this sec-
tion we will discuss the shortcomings of existing ap-
proaches and outline the open questions that are most
important in our opinion.

Patterns of clone evolution. There seems to be
consensus on a basic set of patterns for clone evolu-
tion. Although named differently, most studies define
similar evolutionary events as being relevant. These
patterns can be categorized into three levels by the el-
ements they match and the number of versions they
span. On the lowest level there are fragment patterns
that model the occurrence and the vanishing of frag-
ments as well as changes to them between two versions.
The next higher level models changes to clone classes
between two versions. Here the patterns by Kim et al.
Same, Add, Subtract, Inconsistent Change and Consis-
tent Change constitute the common basis. The highest
level form clone class patterns that span across more
than one version step. The most prominent representa-
tive is Late Propagation, but also Aversano’s Indepen-
dent Evolution belongs here. Yet, no model comprises
all of these patterns. The existing approaches either
lack the high-level ones [5] or choose a narrow focus
and use shortcuts to come to a subset of the patterns
directly [1, 2, 6].

We believe that a model that computes all kinds of
patterns by aggregating the higher from the lower ones
would be beneficial for two reasons: First, starting on a
low level leaves enough flexibility to identify and model
additional patterns that might not have been consid-
ered yet. These cannot be found by studies that ex-
plicitly focus on a predefined set of patterns. Secondly,
a complete trace of a clone’s evolution could support
clone management. As stated before this could be a
basis for metrics that rate a clones severity by means
of its bygone evolution.



Question 1 How can we build more compre-
hensive models of the evolution of clones?

Question 2 Are there more patterns, that
are relevant to the impact of clones on code
quality?

Mapping clones. Despite of using different tech-
niques, the proposed models have in common that
they start off mapping fragments of the detected clone
classes across versions. However, the way this mapping
is further processed differs a lot. It can be embedded in
rules that map clone classes from one version to another
[5], used to define patterns upon fragments and their
membership in clone classes [2] or to compare changes
of fragments without considering clone classes of later
versions at all [6].

These choices have a vast impact on which evolu-
tionary events can be observed and which cannot. One
difficulty here is that cloned fragments are defined in
relation to each other. They do not have a meaning
outside this context and cannot be considered as single
units. This becomes obvious when regarding the Late
Propagation pattern with classes consisting of only two
fragments. After the initial inconsistent change, the
class disappears because it now has only one fragment,
which is not a clone anymore as the other fragment has
changed. When the change is also made to the other
fragment in a later version, the class re-appears, be-
cause both fragments are again clones of each other.
The same happens with late propagations on larger
clone classes, where only a single fragment is ‘forgot-
ten’. The single fragment will be invisible to clone
detectors while it is in an inconsistent state. These
problems indicate, that it does not suffice to only map
fragments of one version to the next. Instead, it is nec-
essary to keep track of them across multiple versions.
Some studies try to circumvent this problem by map-
ping fragments across every pair of versions and not
only consecutive ones [2, 6]. Unfortunately, these ap-
proaches do not scale well. Furthermore they are not
capable of mapping clone classes across versions.

Question 3 How can single fragments be
tracked efficiently even when they are invis-
ible to clone detection temporarily?

Question 4 Can clone class mappings be
combined with such a fragment tracking?

Choice of interval. The interval at which versions
of a program are analyzed has a considerable impact
on the results. Intervals chosen too long might blur

the results and hide important detailed patterns. For
example, every late propagation is reported as consis-
tent change if the interval is chosen long enough. Short
intervals on the other hand can lead to a high number
of inconsistent changes reported. Note that there is no
consistent change at all if the interval is chosen short
enough, because changes to different fragments cannot
be performed simultaneously.

For very fine grained stepping, this means that a
consistent change pattern should be allowed to span
more that just one step. However this raises the prob-
lem that some boundary between consistent changes
and late propagations must be defined. In contrast, a
wider stepping leaves the categorization of the change
to chance, because it depends on the point in time
where the version snapshot was taken.

Although the choice of interval often depends on the
availability of the source code, we believe that more
thought needs to be spent on choosing a sensible inter-
val and investigating the influence on the results.

Question 5 How can we discriminate be-
tween Consistent Changes and Late Propaga-
tions?

Evaluation of mappings. Despite the increasing
number of models for clone evolution, their evaluation
has not gained much attention, yet. So far, only Bakota
et al. defined a quality criterion. It states to what ex-
tend two mappings between the fragments of two ver-
sions vn and vm, that vary in their version stepping,
differ. One of the two maps the fragments of vn and
vm directly, the other one incorporates additional ver-
sions between vn and vm. The second mapping bases
on more detailed data and should therefore be more ac-
curate. The goodness of the direct mapping in respect
to the detailed one is then measured as the number of
differences between the mappings from vn and vm (for
the detailed mapping the composition of all mappings
from vn to vm is used).

While this is a reasonable criterion to compare map-
pings with different stepping, it does not make any
statement on the mapping’s precision and recall com-
pared to a human oracle. A bypass to this problem is
inspecting all results manually [1, 5]. Not all studies
spend this effort and confine themselves to inspecting
only patterns of interest [2] or do not state how the
computed evolution model was evaluated [6].

Evaluating the mappings should be regarded as an
open issue, especially for studies on larger code bases
where manual inspection of all results is out of ques-
tion.



Question 6 How do we define a mapping’s
correctness and how do we measure it?

Clone detection approach. The quality of the re-
sults obtained from clone evolution analyses depends
to a large extent on the underlying clone detection ap-
proach. Available detection methods are known to lack
precision and recall. If the clone detector reports many
false positives that are taken into account for quantita-
tive measures, the validity of the results is doubtful. To
improve precision, an AST-based detection algorithm
is used [2] or only type-1 clones are taken into consid-
eration [6]. Another way is manually inspecting clone
candidates and discarding false positives [1, 5].

The influence of these countermeasures and whether
the results are still valid has not yet been investigated.
Furthermore, the scalability of discarding false posi-
tives by manual inspection is not given.

While AST-based clone detection alleviates some
common problems like false positives and fragments
partially overlapping different syntactic regions, the
downside is that it cannot deal with most code that
contains preprocessor directives which is the case for
most large-scale C and C++ systems. Many of these
tools are also limited to the analysis of Java code and
indeed Java is the predominant language among the
systems investigated regarding clone evolution.

Question 7 How do we deal with false posi-
tive clones?

Scalability. Like with any other algorithm, it is de-
sirable to obtain results in appropriate time also for
large systems. Concerning the papers we have consid-
ered, the amount of time required to produce results is
relatively high. On the one hand, this is due to manu-
ally inspecting intermediate results [1, 5]. On the other
hand, matching clones of one version to the next has
quadratic complexity. The effort can be reduced by
presorting clones before matching them [2].

There is reason to believe that clones show different
properties in software of different scale and therefore
modeling techniques should be able to deal with large
systems. Our opinion is the larger the code base gets,
the more issues arise that could lead to problematic
changes to clones. Plenty of code makes it difficult, if
not impossible to keep the whole source code in mind,
whereby the chance that clones are overlooked, when a
change is made, raises. It also seems plausible that a
larger number of developers meets more complex inter-
relations that might cause negative effects by clones. A
study performed by Balint et al. suggests that clones
that were introduced by one person could be changed

inconsistently by another one because the cloning rela-
tionship is not documented [3].

Many clone evolution studies stick with smaller sys-
tems because their approaches lack scalability. Only
Bakota et al. analyze a program exceeding one million
lines of code, but at the same time they merely ana-
lyze twelve versions. Scalable and automated methods
are needed to broaden clone evolution studies on such
systems.

Question 8 How can techniques to compute
evolution models be made more scalable?

4 Conclusion

Researchers agree that the history of code clones
needs to be considered for evaluating their impact. We
described different models of clone evolution that have
been presented in previous works. We also outlined the
respective methods to extract specific evolution pat-
terns from a program’s history.

Based on the shortcomings of the individual ap-
proaches, we identified some general questions that
have not been answered yet. We do, however, believe
that answering these questions is essential for drawing
conclusions from the results of clone evolution analysis.

References

[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones
are maintained: An empirical study. In European Con-
ference on Software Maintenance and Reengineering.
IEEE CS Press, 2007.

[2] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells
in software evolution. In International Conference on
Software Maintenance, pages 24–33. IEEE CS Press,
Oct. 2007.

[3] M. Balint, R. Marinescu, and T. Girba. How devel-
opers copy. In International Conference on Program
Comprehension, pages 56–68, Washington, DC, USA,
2006. IEEE Computer Society.

[4] C. Kapser and M. W. Godfrey. “Cloning considered
harmful” considered harmful. In Working Conference
on Reverse Engineering, pages 19–28, 2006.

[5] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy.
An empirical study of code clone genealogies. In Euro-
pean Software Engineering Conference and Foundations
of Software Engineering (ESEC/FSE, pages 187–196,
2005.

[6] J. Krinke. A study of consistent and inconsistent
changes to code clones. In Working Conference on Re-
verse Engineering. IEEE CS Press, 2007.

[7] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluat-
ing the harmfulness of cloning: A change based exper-
iment. In Mining Software Repositories, ICSE Work-
shop. ACM Press, May 2007.


