Mapping Code Clones Using Incremental Clone Detection

Nils Gode
University of Bremen, Germany
http://www.informatik.uni-bremen.de/st/
nils@informatik.uni-bremen.de

Abstract

Understanding the evolution of duplicated source
code is mecessary to investigate the phenomenon of
cloning. To trace individual code clones across mul-
tiple program versions, clones of consecutive versions
need to be mapped. Current methods detect clones of
different versions first and then map detected clones
retroactively.

I present an approach to map individual clones be-
tween consecutive program versions during clone de-
tection. The method is integrated into a token-based
incremental clone detection algorithm. Clones are
mapped according to the changes made to the source
files of the program between versions.

1 Introduction

Studying the evolution of code clones requires detect-
ing duplicated source code in multiple versions of a
program. Clones of consecutive versions need to be
mapped to trace individual clones. We presented the
first incremental clone detection algorithm designed
for detecting clones in consecutive versions of a pro-
gram [3, 4]. Apart from the benefit in run-time com-
pared to conventional approaches, the algorithm pro-
vides the foundation to map clones during clone de-
tection, making a retroactive mapping superfluous.

This paper presents an extension to the incremental
algorithm that allows to trace clones across program
versions during clone detection. The approach over-
comes the problems of a retroactive mapping, which
are the computational complexity and the imprecision
of heuristics being used.

For the remainder of this paper, the term fragment
refers to a section of source code that has a well-
defined location and is similar or identical to at least
one other fragment. Two or more similar fragments
are grouped in a clone class.

2 Related Research

Different approaches to map clones between program
versions have been presented. Kim et al. first relate
fragments based on the location overlapping and their
textual similarity [6]. Clone classes are then mapped

according to the fragment relation. Considering ex-
tensive changes, a drawback is that clones might not
be mapped correctly due to the large difference be-
tween the old and the modified versions of fragments.
Aversano et al. detect clones in a single version and de-
duce the relation to clones of following versions from
the changes made to the source code [1]. A similar
method has been applied by Krinke [7]. Both ap-
proaches lack the ability to detect new clones in later
versions. Bakota et al. map fragments based on infor-
mation from the abstract syntax tree [2]. A common
problem of all approaches is their high computational
cost. A more detailed discussion of problems related
to mapping clones can be found in [5].

3 Mapping Clones

Existing approaches map clones either on a low level
by matching fragments or on a high level by match-
ing clone classes. The drawback of matching classes is
that a class can potentially have an arbitrary number
of ancestors or descendants. Choosing one of these to
be the “true” ancestor or descendant restricts possi-
ble interpretations of the mapping. To map individual
fragments instead of clone classes allows a one-to-one
mapping between fragments instead. A mapping be-
tween classes can then be derived from the fragment
mapping according to the respective usage scenario.

Let z and y (z < y) be two versions of source code.
Then mody(f.) = f, denotes the changes applied to
fragment f, in version x resulting in f, in version y.
The problem of mapping fragments from version i — 1
to i is finding f;_; such that mod: *(fi_1) = f; for
each f in version i. f;_; is called the ancestor of f;.
It may happen that there exists no f;_; meaning f;
has been newly introduced in version i.

A problem arises from fragments that disappear
temporarily because the respective clone class is
changed inconsistently. When the change is made con-
sistent in a later version, the reappearing fragment
is regarded as a new fragment. To detect temporar-
ily disappearing fragments, fragments that have been
part of a clone class in an earlier version and are cur-
rently not part of any class are tracked further on.
Any such fragment is called a ghost fragment. Note
that ghost fragments are just an internal representa-

37 WSR 2009



tion and are not reported as clones to the user.

To detect reappearing fragments, we allow the an-
cestor of a fragment to be in any of the earlier versions,
not just the previous. For that, the notion of the an-
cestor for fragment f; is extended to f;_; such that
modf‘l( fi—1) = fi- Because the ancestor refers to the
most recent occurence only, it is required that each
fragment f;_j with 0 < k <[ and mod:;*k(fi,k) = f;
is a ghost fragment.

My extension to the incremental clone detection
algorithm creates the mapping among fragments by
calculating the ancestor for each fragment f; for each
version 1.

4 Tracing Procedure

Although the mapping is based on fragments, the
difficulty is that fragments are defined only in rela-
tion to each other. That means for any version i,
mod:*(fi_1) = fi is known. Still there is no guar-
antee that f; exists as a normal fragment, because
changes made to other fragments of the clone class
might result in f; remaining the only fragment of the
class and the class disappears in case of which f; be-
comes a ghost fragment. To solve this, the basic idea
of my approach is to calculate f; for every f;_1 be-
longing to a class that has at least one fragment in a
changed file and assume f; to be a ghost fragment by
default. It is assured that any of these fragments that
has wrongly been set to be a ghost is redetected in a
later phase and its state set to normal again.

For each version ¢ that is to be analyzed, our in-
cremental algorithm performs the following phases:
(1) Process changed files, (2) process existing clone
classes, (3) detect new clone classes, (4) merge new
and existing fragments. My extensions are as follows.

Prior to processing changed files, the ancestor of
each fragment is set to the fragment’s occurrence in
the previous version unless the fragment is a ghost
fragment.

(1) When processing changed files, the lines that
have changed for a particular file are given as input
to the algorithm. The line information is transformed
to token information giving a higher precision. The
source code locations and bounds of all fragments (in-
cluding ghost fragments) contained in the file are ad-
justed according to the previously calculated token
changes.

(2) After all changed files have been processed, the
fragments of existing clone classes are updated. As
soon as a single fragment of a class is contained in a
changed file, all fragments of the class are set to be
ghost fragments, because at this point it is not known
whether the class and its fragments continue to exist.

(3) New clone classes are retrieved. The set of
newly detected classes contains all classes of which
at least one fragment is contained in a changed file.

(4) Within the last phase, the fragments of the
newly detected classes are processed. For each frag-

ment it is checked whether the fragment already ex-
ists. The existence of a fragment can be checked in
constant time, because every fragment can clearly be
identified by its first and last token and the file it
is contained in. If it does not exist, the fragment is
truly a new one and has therefore no ancestor. If the
fragment exists and is a ghost fragment, the existing
fragment’s state is set to normal. Note that the exist-
ing fragment’s ancestor has already been set correctly
prior to the first phase.

When all newly detected fragments have been pro-
cessed, every fragment has been correctly mapped to
its previous occurrence. The mapping from the previ-
ous version ¢ — 1 to the current version ¢ has therefore
been completely established.

5 Conclusion

Analyzing the evolution of code clones is essential to
study the phenomenon of cloning. This requires map-
ping clones of different program versions. I presented
an extension to our incremental clone detection algo-
rithm that traces clones during the clone detection
process. The algorithm identifies the previous occur-
rence of each fragment by considering the changes
made to the files’ token sequences. Furthermore, it
keeps track of fragments that are temporarily not part
of a clone class. The low-level mapping of fragments
provides the foundation for deriving high-level evolu-
tion patterns among clone classes.

References

[1] L. Aversano, L. Cerulo, and M. Di Penta. How clones
are maintained: An empirical study. In Proceedings
of the 11th FEuropean Conference on Software Main-
tenance and Reengineering, pages 81-90. IEEE Com-
puter Society Press, 2007.

[2] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells
in software evolution. In Proceedings of the 23rd Inter-
national Conference on Software Maintenance, pages
24-33. IEEE Computer Society Press, 2007.

[3] N. Gode. Incremental clone detection. Diploma thesis,
University of Bremen, 2008.

[4] N. Gode and R. Koschke. Incremental clone detection.
In Proceedings of the 13th European Conference on
Software Maintenance and Reengineering, pages 219—
228. IEEE Computer Society Press, 2009.

[5] J. Harder and N. Gdde. Modeling clone evolution.
In Workshop Proceedings of the 13th European Con-
ference on Software Maintenance and Reengineering,
pages 17-21, 2009.

[6] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An
empirical study of code clone genealogies. In Proceed-
ings of the Joint 10th European Software Engineer-
ing Conference and the 13th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering,
pages 187-196. ACM Press, 2005.

[7] J. Krinke. A study of consistent and inconsistent
changes to code clones. In Proceedings of the 14th
Working Conference on Reverse Engineering, pages
170-178. IEEE Computer Society Press, 2007.

38 WSR 2009



