Integrated Behavior Models for Factory Automation Systems

Jewgenij Botaschanjan

*

Benjamin Hummel

Institut fiir Informatik, Technische Universitidt Miinchen
Boltzmannstr. 3, 85748 Garching b. Miinchen, Germany
{botascha,hummelb} @in.tum.de

Thomas Hensel

Alexander Lindworsky

Institut fiir Werkzeugmaschinen und Betriebswissenschaften, Technische Universitidt Miinchen
Boltzmannstr. 15, 85747 Garching b. Miinchen, Germany
{thomas.hensel,alexander.lindworsky } @iwb.tum.de

Abstract

Despite the large amount of models for different aspects
of factory automation systems, many of these models target
at individual and in most cases static aspects of the system,
such as the geometry or its electric parts. There is a lack
of suitable description methods, which integrate these indi-
vidual models to a behavior model including spatial aspects
and the handling of material. Furthermore, it is important
that this model keeps the link to the more detailed individual
models and is sufficiently formal in order to allow an auto-
mated analysis. This paper provides a solution to this prob-
lem by introducing a model which addresses both spatial
structure and behavior and is based on a thorough mathe-
matical theory. Complementary, we report on a tool real-
ization of the modelling theory and explain how the model
supports the development of mechatronic systems.

1. Introduction

In the the last decades machine manufacturers faced new
challenges due to the increasing number and complexity of
customer demanded functions as well as the raised share of
PLC software in automation systems [28]. The substitution
of purely mechanical operation principles by mechatronic
solutions has led to a strong interdependence of the techni-
cal disciplines [17]. The question arises, how the develop-
ment, validation, and testing of such complex systems can
be supported. In the early phases of development, often no
suitable system model is available, which could be used for
validation. It is still common that the automation system
is not even tested before the regular commissioning phase,

*This work is partially funded by the AIF e.V. and the German Ministry
of Economics and Technology (BMWi) in the context of the AutoVIBN
project.

when a comprehensive system test is usually not possible,
since the work takes place under high time pressure. Fur-
thermore, changes to the system are often extremely cost-
intensive or even not possible at this stage. Above all,
failure scenarios and erratic behavior are only examined
rudimentarily due to the lack of time, missing specification
of possible errors, and the risk of damaging the machine.
Thus, errors are not identified and may appear during the
operation phase [10].

Despite the mechatronic character of modern production
systems the development processes are still focused on me-
chanical engineering, which has a leading position. The de-
velopment process is built up in a sequential manner, with
one discipline building upon the results of the previous one.
Normally, the mechanical engineers are defining the func-
tions of a machine at the beginning of the development pro-
cess. Subsequently the machine is designed by the differ-
ent departments, which complement the previous models by
their own descriptions, such as electric wire plans or soft-
ware code. However, using this sequential process misses
many opportunities for cost reduction or improvement from
interdisciplinary cooperation. Without a common model
which can be understood and extended by engineers from
all disciplines, the sequential process is hard to come by.

The envisioned common model would act as a link be-
tween engineering departments and capture all aspects of
the machine (mechanics, electrics, controller), albeit in an
abstract and simplified fashion. Then, design ideas can be
explored and discussed with the customer more easily. By
refining this model, by adding more details, and finally us-
ing it as a basis for discipline-specific models (e. g., CAD
models), synergies emerging from mechatronics can be ex-
ploited and the overall development process gains flexibil-
ity. Finally, such a model can serve as the basis for valida-



tion and verification by observing its simulation and using
it as a counterpart for software testing or stress estimations.

Contribution This paper introduces integrated be-
havior models, which combine static/structural, dy-
namic/behavioral, and spatial aspects of a (mechatronic)
system into one common model. These models are suf-
ficiently abstract to be created fast and early on, but still
detailed enough in order to be executable and support early
validation by simulation. We provide a detailed description
of the model elements used, their interplay and interpreta-
tion, and the reasons for designing the model the way it is.
Furthermore, we report on various development activities,
which can be supported by the described model, includ-
ing documentation purposes, early validation, tracing and
checking consistency between other engineering models,
as well as testing of the controller software. As a proof-
of-concept, tool support for modeling and most of these
activities has been built.

Outline The next section relates the model described here
to existing work in this field and elaborates on the differ-
ences to the presented approach. Sec. 3 describes the model
in detail and explains some consequences of design choices.
In Sec. 4 different activities are sketched that can be sup-
ported by using the integrated models, and finally we con-
clude and provide an outlook on planned work in Sec. 5.

2. Related Work

Most modeling approaches for industrial automation
concentrate on the control software aspect and abstract from
the physical processes in the environment of controllers.
From the methodological point of view such approaches
consider only one fragment of mechatronic systems and fail
at integrating the different involved disciplines. Also, for
an early and reliable validation of control software, e. g.,
by simulation, test-case generation, or HIL/SIL (hardware-
/software-in-the-loop), the behavior of its physical environ-
ment has to be “somehow” mapped to observable sequences
of input signals. The control-related approaches offer no
guidance for this procedure. Next, we compare our ap-
proach with works, which aim at a integrated description
of mechatronic systems.

Bonfé et al. [1] extends UML-RT in a way which al-
lows the capsules to be also specified by bond graphs. By
this, continuous mechanical and electrical issues can be
captured within an object-oriented modular system descrip-
tion. However, every single capsule can be modeled either
as a discrete (e. g., by a Statechart) or as a continuous one
(using bond graphs). This limitation does not exist in the
presented approach. Also, no explicit modeling of material
and material flow is provided by [1].

The language and tool Modelica [26] supports modeling
of physical systems with continuous and discrete parts. The

disadvantage of Modelica is the high level of detail needed
for the system description: masses, torques of inertia, and
friction coefficients are not known in the early development
phases. The present approach supports different levels of
abstraction; it allows describing individual components of
the same system at different levels of detail.

Model Integrated Mechatronics (MIM) [24, 25] is a
component-based model, in which a component consists
of mechanical, software and resource parts. The behav-
ior of each part is specified by a simulator. The tool
Archimedes [24] is a prototypical realization of MIM. Un-
fortunately, no details are provided on how these simulators
interact with each other. Furthermore, the lack of an explicit
integrated model limits this approach to simulation and does
not support more advanced analysis methods.

The MEDEIA project [23] aims at integrating different
descriptions of mechatronic components as well as of hi-
erarchical and structural layout of mechatronic systems.
Thereby, the behavioral aspect is left unspecified and, con-
sequently, the integration of different views and compo-
nents to an overall system behavior remains an issue.

Petri-nets are often proposed (cf. [11,29] and references
therein) as a modeling formalism for mechatronic systems.
High-level Petri-nets or Activity Diagrams allow concise
and intuitive description of data and control flow between
distributed constituents of a system and actors in its environ-
ment. However, to the well-known limitations of Petri-nets
belongs the lack of composability (c¢f. Sec. 3.6 for an in-
depth discussion of this topic). Thus, this formalism cannot
be considered as an appropriate choice for modeling mod-
ern mechatronic systems.

The present work applies a special type of communi-
cating hybrid I/O automata for modeling the behavior of
mechatronic components. Hybrid automata seem to be the
most natural choice since they allow to model both the con-
tinuous physical processes and discrete controller behav-
iors and incorporate the notion of composition. The general
models of hybrid automata [13, 18] do not provide explicit
modeling constructs for material flow and collisions, which
constitute an essential behavioral aspect of mechatronic sys-
tems. For the modeling of mechatronic systems the global
and PLC automata were proposed in [7] resp. [9]. Al-
though, we were not able to find a trace set-characterization
of global automata, they seem to be a generalized version
of Henzinger’s hybrid automata [13]. The relationship to
Lynch’s TIOA [18] is unclear. PLC automata provide an
operational semantics for the Duration Calculus [27]. They
are concerned with modeling of control software only. Both
formalisms lack of explicit support for material flow and
collisions — the first-class citizens of the present approach.

The existing tools and approaches for HIL/SIL simula-
tion, also called virtual commissioning [8, 20, 21], do not
consider the integration of their models and methods into



the broader context of system development. This greatly
enhances the effort of their application and produces redun-
dancies in the project data. The present work aims at signif-
icantly reducing both the effort and redundancies.

3. Integrated Behavior Modeling

This section describes our approach for modeling the be-
havior of mechatronic or cyber physical systems in the do-
main of factory automation. It extends on earlier versions
described in [3, 16]. We give an overview of the modeling
elements used, their interaction, and their intuitive meaning.
A more formal view on the semantics of a part of this model
can be found in [15].

The behavioral aspects of the model are based on the
FOCUS theory [6], which is an asynchronous stream-based
semantical framework for formalizing reactive systems, and
especially on its tool realization AutoFOCUS [5,22]. The
spatial description of the system are influenced both by 3D-
CAD tools and ideas from spatio-temporal logics [12, 19].

3.1. Foundation

The model builds upon two fundamental notions: fypes
and space. Types are used for internal computations and
to describe signals exchanged between components. In this
context a type has a name, a set of valid values (its carrier
set), and a set of operations. More complex type systems
(e. g., including inheritance) can be mapped on this simple
scheme. For practical purposes we usually limit the types to
Boolean, numerical (integer and real values), enumeration,
and tuple types, which seem to be sufficient in the context
of industrial automation.

To describe the shape of a system, we introduce the no-
tion of space, which consists of a description of valid vol-
umes, operations for merging volumes and checking them
for collision, and a set of valid transformations (see [15] for
a formalization). For our abstract models we usually limit
the volumes to those which can be constructed by simple ge-
ometric objects (cuboids, cylinders, spheres) and only allow
affine transformations (rotations and translations), however,
more complicated geometry systems including constructive
solid geometry (CSG) or spline based modeling systems can
be mapped to our notion of space as well.

3.2. The Basic Model

The main element of the model is a component. A com-
ponent can be used to describe individual parts of the system
as well as the entire system. By composition (cf. Sec. 3.6),
multiple components can be combined into a single compo-
nent, which allows the assembly of components for larger
parts of the systems from the components for smaller parts.
This composability is central to the model as it helps in
reducing complexity in modeling and analyzing a system
by decomposing it into a hierarchy of smaller components,

which can be modeled and analyzed in isolation. Compo-
nents are also used to bridge the gap between spatial prop-
erties and behavior models as shown in Fig. 1.

A component consists of a syntactic interface (its struc-
tural aspects), which is described next, and a semantic inter-
face (its behavioral description), which is detailed in the fol-
lowing subsection. The structure of a component is given by
sets of input and output ports, parts, detectors, and movers.
The input and output ports describe the communication end-
points of the component, where communication includes
signal exchange between controllers via a common bus as
well as the transmission of the number of revolutions from
a motor to the belt conveyor it is driving. The ports are an-
notated by a type giving the kind of messages exchanged.

The spatial aspects of the component are given by the
parts, which describe the dimensions and shape of the com-
ponent. These are the portions of the system traditionally
modelled in 3D-CAD tools, although we usually use simpli-
fied geometry for our abstract models. Locations in space
where the component can observe and react to the presence
of other parts are marked by detectors. These are used for
example to model the light ray of a photoelectric barrier or
the covered range of a proximity sensor. Both parts and
detectors are assigned volumes of our space system. The
remaining elements, movers, denote facilities which affect
the position of other parts or material. They correspond to
actuators in the real system and are associated with an axis
and kind of motion (linear or rotational).

3.3. Behavior Specification

To specify the behavior of a component, we use hierar-
chical communicating hybrid state machines. These consist
of discrete control states, state variables, and transitions.
Control states are connected by transitions, which model
discrete events in the system. Transitions can be guarded by
Boolean expressions over the state variables and cause these
variables to be updated. The state machine is hierarchical,
i. e., states may contain further states, to ease the structuring
of complex behavior. Being communicating means that the
guards of transitions may also depend on the messages re-
ceived at the input ports of the component whose behavior
is specified. Additionally, a transition may cause messages
to be sent at the output ports.

The hybrid part of the state machine is mostly used to de-
scribe motion of the system’s parts. For this, each state can
be augmented by linear differential equations in the state
variables, which describe the continuous behavior between
discrete steps. Note that we are using hybrid automata
only for conceptional reasons to obtain a clear separation
between discrete and continuous change and to simplify
notation. As mentioned in Sec. 3.7 the interpretation and
evaluation of these state machines is performed in discrete
time, which can lead to artifacts due to approximation er-



e ™\
Spatial View Structural View Behavioral View
(Volumes) (Components) (State Machines)
\ R
)

Figure 1. Linkage of Different Views in the Integrated Model.

rors, which, however, often can be neglected at our level of
abstraction.

Detectors are integrated with these automata by inter-
preting them as read-only Boolean state variables, which
are automatically set by the simulation environment based
on actual collisions between parts and the respective detec-
tor. Similarly, each mover corresponds to a state variable,
into which the amount of motion along the mover’s axis is
written into. Usually these mover variables are used in the
differential equations to enforce motion as long as the com-
ponent is in a certain state.

In addition to these state machines, our framework sup-
ports the usage of alternative specification techniques (both
from a theoretical point of view, and in terms of our tool-
ing infrastructure). We are currently experimenting with al-
ternative description techniques, such as tabular notations,
graphical traverse path specification, or HMI definitions for
interactive user input during simulations. While state ma-
chines are the most generally applicable, other techniques
can be more efficient for certain behaviors. Additionally
we support the concept of behavior modifications, where a
behavior description is augmented by an additional model.
This allows to use different description techniques for or-
thogonal aspects of the behavior. We are using this tech-
nique to describe possible errors for components repre-
senting hardware. These components can be used to test
whether the controller is capable of ensuring safety even in
the presence of hardware defects. The details of this tech-
nique are given in [2].

3.4. Material Handling

An essential aspect of industrial automation is the treat-
ment of material, which covers an extreme range from
bricks and bottles to partially assembled circuit boards or
car bodies. To model and analyze such systems, we must be
able to describe and simulate this material and especially its
interaction with the system’s components.

To describe a single piece of material, we use the same
component-based description technique as for the system
itself. This is done to not increase the number of model
elements further and also because the material can be as
complex as the system itself. The main difference is that
for a material component there can be multiple instances
in the simulation and instances have to be created and de-
stroyed dynamically. So called entries are used to introduce
new (material) components to the simulation, while exits
are used to remove them. Both are associated with a spa-
tial volume to describe where components are inserted or
discarded.

For the interaction between components of the system
and the material there are two questions. The first is when
interaction does occur, the second is what kind of interac-
tion it will be. To determine, when material is in “interac-
tion range”, we are using detectors (which are already used
for interaction, as they sense the parts of material compo-
nents as well). Each component is complemented by bind-
ing conditions, which are basically predicates over the de-
tectors. A material component is bound (and thus interact-
ing), if the set of detectors of a component with which it col-
lides fulfills this predicate. In this case the detectors either
form the surface of some gripping- or friction-based trans-
portation device, or the detection region of a sensor. For
example a material might only be interacting with a gripper
component, if it is gripped from both sides, i. e., activates
both gripper detectors. Detectors can also be completely
deactivated on a per-state basis, e. g., to model switching
off a magnetic field.

The kind of interaction is defined by the binding condi-
tion as well and either connects the material to a mover of
this component, causing the material to be moved as long
as contact to the detectors is not lost, or temporarily con-
necting ports of the material component with those of the
system’s component. The later can be used to model com-
plex sensors (such as RFID scanners), which read some in-



formation from the material, or components which change
the state of the material component. Using port based com-
munication, complex interactions can be handled without
extending the meta-model.

3.5. Motion and Collision

As argued before, we consider the spatial aspects of the
system to be highly important for the automation domain.
This especially includes the dynamics, i. e., the motion of
the system’s parts and material objects over time. As parts
represent solid objects, their volumes may not overlap, i. e.,
collide with each other. We use the term collision to in-
dicate an actual intersection of volumes here, not only for
non-penetrating “touching”. Thus, just as in the real world,
motion initiated by components might not be performed due
to blocking by other parts.

In our model we interpret the motion initiated by compo-
nents (which is realized by writing to the mover’s variable
the “amount” of motion required) as a request. Whether
this request is fulfilled is determined by the simulator in
a separate phase. In this phase possible collisions caused
by movements are calculated and motion requests are par-
tially cancelled based on the results. Often, this cancella-
tion propagates along the component hierarchy, as an entire
robotic arm might be blocked if its gripper touches an obsta-
cle. The same holds for material, which has been bound to
a component’s mover. However, for these bindings we dif-
ferentiate between weak and strong bindings. Weak bind-
ings indicate that the motion of the underlying component
is not affected if the bound material can not move. This is
used, for example, for belt conveyors, which will continue
to move and transport other objects on its surface even if
one material object is blocked by a barrier. Strong bind-
ings in contrast also cause the moving component to stop.
An example for this is material gripped by a robot, which
can not complete its movement if the object it handles is
stuck. If material would be bound to multiple movers,
strong bindings always prevail. In case of multiple equally
strong bindings, we decided to choose only one binding
non-deterministically but fair. This way each binding will
eventually be active and make some progress. However,
more complicated resolution schemes for multiple active
bindings are imaginable.

3.6. Composition

One of the important aspects in engineering is composi-
tion, i. e., creating a new part by combining existing ones.
This allows to handle complex problems by dividing them
into manageable parts and assembling the solution from
them. Furthermore, existing building blocks can be easily
integrated into new designs by composition. Thus, compo-
sition is central for our approach.

& CCT5 Modeling - - Edipse SDK SEIE
Edt Novoate Search Profect Run Widow Heb

om0 | & [

Figure 2. The
AF/STEM

Modeling Environment

When composing two or more components, their input
and output ports can be connected by channels (if they
transport the same type) to model communication between
these components. Additionally ports can be associated
with the ports of the surrounding (composed) component.
By this the syntactic interface of the composed component
is formed by a subset of the ports of all its sub-components.
The parts, detectors, and movers of the composed compo-
nent are just the union of the respective elements of the
subcomponents. A component may introduce additional
(static) parts, and may apply a transformation to its sub-
components. Thus composition for parts is similar to the
approaches used in mechanical CAD systems. Furthermore,
a component can be connected to the mover of a sibling
component during composition, which makes the compo-
nent follow every transformation of the respective mover.

The behavior of the composed component is then fully
defined by the behavior of its subcomponents and the chan-
nels between them. From a theoretical point of view,
composition can be interpreted as recursive equations over
stream-processing functions [6, 15]. Practically, we inter-
pret the composition of behavior as composition of the
corresponding state machines, which is just an automaton
product. To avoid the state space explosion, this product is
used only implicitly in the simulator. We want to point out,
that this notion of composition is an important difference to
Petri-net based approaches, as, other than state machines,
Petri-nets are not compositional, i. e., given two Petri-nets
there is no known automatic procedure to create a Petri-net
that is equivalent to both of them running synchronously
and in parallel.

3.7. A Note on Time

While mechatronic systems contain a large amount of
control algorithms, which require a continuous model of



time, on the level of abstraction we are interested in these
only play a minor role and can be abstracted by discrete al-
gorithms most of the time. Thus we decided to use a simple
model of discrete time, where time advances in (not neces-
sarily equidistant) ticks and events within a single tick can
not be differentiated. Furthermore, components can send
and receive at most one message on each port in a single
tick. In our experience, most effects can be modelled and
analyzed in this time model, as long as the length of a single
time interval (tick) is chosen sufficiently small.

The limitation to this discrete time model simplifies both
the understandability and analyzability as well as the cre-
ation of models and supporting tools. So, more care can
be taken of the interplay of behavioral and spatial proper-
ties, which in our opinion is the central problem on a more
abstract modeling level. However, extending the theory to
more complex models of real or continuous time can be eas-
ily achieved following [4], although creating suitable tool
support will be more challenging in this case.

3.8. Tool Support

To allow experimentation with these models, a proto-
typical editor for the model introduced so far has been im-
plemented. A screenshot of the tool, called AF/STEM!, is
shown in Fig. 2. It consists of a basic type system, model-
ing support for components, automata, and simple geome-
try, as well as simulation and visualization support for these
models. We also use the application to implement process
support, which is described in the following section.

As components in industrial automation systems are usu-
ally used multiple times (e. g., drives or belt conveyors), a
concept for structured reuse is crucial for a modeling tool to
avoid rebuilding the same components over and over again.
For this we implemented generative libraries as described
in [14] for our tool. Our implementation also allows the cre-
ation of parameterizable library elements, so for example a
library element of a belt conveyor could support a variable
user provided length.

4. Process Integration

Functional descriptions are often used in industrial prac-
tice. However, in most cases they are textual and, hence,
not suited for computer-aided engineering. They serve as
an initial system specification, but become outdated and ob-
solete as more detailed system models evolve. Simultane-
ously, these discipline-specific models become inconsistent,
the maintenance and coordination efforts grow. Thus, the
main purpose of the presented abstract mechatronic model
is to allow decision-making engineering experts from differ-
ent involved disciplines to coordinate and synchronize the
development progress within an environment which offers

"http://af3.in.tum.de/index.php/AF/STEM

Functional Description

Abstract, -
Mechatronic - T
Model m
Mechanical CAD Electrical CAD
TU v TW
CAD Models % @
Automatic
Generation
A 4
« Simulation Model & Visualisation
Model for
Virtual A
Commissioning o W

Figure 3. Process Integration of AF/STEM

TR Technical Resources =
[Technical Resource Specification
Narme Info
- = Actuator motion: rotatory, active principle: electric, control mode: velocity
~ a0 NSOLL_A ifo address: 12, 16 bits
BI[0..14): NSOLL  16-Bit-Auflésung mit Vorzeichenbit
#1[15..15]: Vorzeict O=positiv; 1=negativ
~ 40 STW1 ifo address: 10, 16 bits
[0..0]: AOO_OFF1 O=Abschaltung; 1= Setzt den Umrichter in den Zustand "Betriebsbereit"
01..1]: AO1_OFF2 O=Zum Stillstand austrudeln; 1= Kein zurn Stillstand austrudeln
Ii[2..2]: AO2_OFF3 O=Betrieb sperren; 1=Kein Schnellstop
ii3..31: 03
(4.4 AD4_HG1 O=Hochlaufgeber zuricksetzen; 1= Hochlaufgeber freisetzen
» 2 NIST A ifo address: 12, 16 bits
» s ZW1 ifo address: 10, 16 bits
~ = Sensor measuring problem: position
ifo address: 202, 16 bits
1 [0..15: Presetwc 0..32767
~ 1 STW1 i/o address: 200, 16 bits
Tech| /O Adapter

BS  O=Betrieb sperren; 1=Betrieb freigeben

~ an Presetwort

Figure 4. Technical Resource Model

design methods and validation support. Thereby, the role
of our model is threefold (cf. Fig. 3): It serves as an input
for more detailed discipline-specific models, it keeps these
models in-sync throughout the development process, and it
can be used to generate models for virtual commissioning.

4.1. Forward Engineering

Starting with customer and supplier discussions about
machine functionality, engineers develop a first machine
concept. Already during this step the abstract mechatronic
model can give support by exploring technical solutions and
discussing them with the customer. For these steps simu-
lation support is crucial, as the customer usually does not
understand the modelling language used.

In later design phases the machine model is enriched by
more technical information about the mechanical and elec-
trical parts, such as which actuators and sensors to use and
the engine power required. This information together with
the component structure will later be incorporated into the
more detailed engineering models, such as mechanic and
electric CAD. To capture this data before CAD modelling
can be started, we allow components to be augmented by
what we call the technical resource model (TRM, cf. Fig. 4).



It contains the technical details of a component’s realiza-
tion. In particular, it stores descriptions (e. g., vendor, model
number, principle of operation, efc.) of sensors and actua-
tors to be used. For every sensor and actuator the signal-
level interface can be defined. All this information allows an
initial import of abstract mechatronic models into the me-
chanical and electrical models as well as automatic HIL/SIL
generation. Presently, the module structure, simplified ge-
ometry, and the technical sensor/actuator data can be im-
ported from AF/STEM into the NX?> CAD system.

4.2. Tracing and Consistency

To relate elements of the abstract integrated model to
parts in more detailed engineering models (e. g., the differ-
ent CAD models), our tool supports the creation and man-
agement of tracing files. These tracing files can be auto-
matically generated during forward engineering or updated
manually. This way the integrated model serves as a hub in
the modeling landscape and allows elements from different
models to be related to each other via this central model.
The tracing links can be used for documentation purposes,
rationale management, and consistency checking.

During consistency checking, we automatically compare
linked elements and their properties with each other to find
deviations and also identify elements which are not covered
by the tracing files. These checks can for example compare
the types of actuator used (which can be found in the TRM),
or the position of a part in the 3D-CAD with the one used
in the integrated model. This way the divergence of the
used models can be detected and avoided early, keeping all
models meaningful during the entire development phase.

4.3. Virtual Commissioning

The testing of complex controller software is practically
infeasible without the machine being controlled. To avoid
testing at the real machine, which can only be performed
after assembly and might damage the machine, today often
virtual machine models are used. This is usually referred
to by the term virtual commissioning or HIL testing and al-
lows the software tests to happen earlier in the development
process, thus often significantly improving software quality.

Unfortunately, the creation of virtual commissioning
models is a time-consuming and error-prone task, since in-
formation needed is spread over different artifacts of the
engineering process. This information is manually gath-
ered and manually incorporated into the simulation mod-
els, producing redundancy and causing additional mainte-
nance effort. In particular, for these virtual machine mod-
els one needs geometry from M-CAD, wiring plans and bus
topologies from E-CAD, signal-level communication proto-
cols from PLC project, as well as the rather implicitly avail-

Zhttp://www.plm.automation.siemens.com/en_us/
products/nx

TR Technical Resources &3

Technical Resource Specification
w Overview for Technical Resources

~ Control Word to Input Port Adapter Specification
This section defines the mapping from control words to input ports.

Port Narme Expression Add

run AOC_OFF1 && AD1_OFF2 && AO2_OFF3 && AD3_E
- - - -~ |Rermove

~ Output Port to Status Word Adapter Specification
This section defines the mapping from output ports to status words.

Field Narme Expression Add
e
EQO1 BS run_out

EC2_BF run_out

EQ3_ST false

E04_OFF1 run_out

EQO5_OFF2 run_out

E05_ES run_out && ACO_OFF1

EQ7_WR false

EO8_DA true

Figure 5. /0 Adapter Specification

able knowledge about the behavior of the used mechatronic
components, material, and its flow through the plant.

All ingredients listed above are covered and synchro-
nized with the CAD tools by the presented abstract func-
tional model. This fact allows us to automatically generate
models for virtual commissioning. The signal-level inter-
face from TRM is exactly the interface used for the com-
munication between PLC and the physical system compo-
nents. On the other side, components from our model com-
municate via logical messages. Thus, for the generation the
TRM associates logical ports with expressions defined on
the signal-level interface. These mappings between fields
and ports are incorporated into /O adapters (Fig. 5) which
are generated with the rest of the abstract model and adapt
the abstract system model to the protocol supported by the
PLC program. Currently, we can generate HIL and SIL
models running in the context of SIMATIC? solutions.

5. Conclusion and Outlook

We presented a novel integrated modelling approach for
the specification of mechatronic systems, especially in the
context of industrial automation. It is designed as a cen-
tral artifact in the interdisciplinary development process of
mechatronic systems and can serve as the basis for verifi-
cation and validation activities. The approach is comple-
mented by a tool prototype and a methodology, which co-
ordinates and integrates mechanical, electrical, and control
software development activities as well as domain-specific
tools, like E-CAD or M-CAD.

3http://www.automation.siemens.com/simatic



Our approach permits modular development of mecha-
tronic systems. The system is described by a set of interact-
ing components, which encapsulate the functional behavior,
geometry, and material flow. This fact facilitates reuse and
library-based development.

The realization of the presented concepts in a tool proto-
type with an operational semantics permits early validation
of system models by simulation, as well as the support of
further quality assurance measures, like generation of test-
cases and virtual commissioning models. The latter one is
already realized for SIMATIC. Further contribution is the
integration of our approach with existing development pro-
cesses and CAD tools. This is of particular importance for
acceptance of research results in practice, since there ex-
ists a significant amount of legacy models which have to be
maintained. For the seamless integration with different de-
sign activities we presented consistency checking and data
exchange mechanisms.

Our next step will be to gain more evidence about the
scalability of our approach by exercising it on industrial-
size case studies. A further important point is the integra-
tion of automatic test-case generation techniques and model
checking back-ends. Finally, we plan the extension of our
approach to support further activities of the engineering pro-
cess. In particular, we consider the generation of PLC code
and initial generation of more elaborated physic simulation
models as promising fields of investigation.

References

[1] M. Bonfé, C. Fantuzzi, and C. Secchi. Unified modeling
and verification of logic controllers for physical systems. In
Proc. of CDC-ECC’05, 2005.

[2] J. Botaschanjan and B. Hummel. Specifying the worst case
- orthogonal modelling of hardware errors. In Proc. of IS-
STA’09, 2009. To appear.

[3] J. Botaschanjan, B. Hummel, and A. Lindworsky. Inter-
disziplindre Funktionsmodellierung im Anlagenbau. ZWF
Zeitschrift fiir wirtschaftlichen Fabrikbetrieb, 01-02:71-75,
2009.

[4] M. Broy. Refinement of time. Theoretical Computer Sci-
ence, 253(1):3-26, 2001.

[5] M. Broy, F. Huber, and B. Schitz. AutoFocus — Ein
Werkzeugprototyp zur Entwicklung eingebetteter Systeme.
Informatik Forsch. u. Entwicklung, 13(13):121-134, 1999.

[6] M. Broy and K. Stglen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces, and Re-
finement. Springer, 2001.

[7] V. Deligiannis and S. Manesis. A survey on automata-based
methods for modelling and simulation of industrial systems.
In Proc. of ETFA’07, 2007.

[8] M. Deppe, M. Zanella, M. Robrecht, and W. Hardt. Rapid
prototyping of real-time control laws for complex mecha-
tronic systems: a case study. J. Syst. Softw., 70(3):263-274,
2004.

[9] H. Dierks. PLC-automata: A new class of implementable
real-time automata. In Procs. of ARTS’97. Springer, 1997.

[10] W. Eversheim. Inbetriebnahme komplexer Maschinen und
Anlagen. VDI, 1990.

[11] L. Ferrarini. A theoretical framework to model and analyze
manufacturing systems. In Proc. of CDC’94, 1994.

[12] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and
M. Zakharyaschev. Combining spatial and temporal logics:
Expressiveness vs. complexity. J. Al Research, 23:167-243,
2005.

[13] T. Henzinger. The theory of hybrid automata. In Verification
of Digital and Hybrid Systems, NATO ASI Series F: Com-
puter and Systems Sciences 170. Springer, 2000.

[14] M. Herrmannsdoerfer and B. Hummel. Library concepts for
model reuse. In Proc. of LDTA 09, 2009.

[15] B. Hummel. A semantic model for computer-based spatio-
temporal systems. In Proc. of ECBS’09, 2009.

[16] B. Hummel and P. Braun. Towards an integrated system
model for testing and verification of automation machines.
In Proc. of MiSE °08. ACM, 2008.

[17] R.Isermann. Mechatronic systems: fundamentals. Springer,
2005.

[18] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The
Theory of Timed 1/0 Automata. Morgan & Claypool, 2006.

[19] O. Kutz, F. Wolter, H. Sturm, N.-Y. Suzuki, and M. Za-
kharyaschev. Logics of metric spaces. ACM Transactions
on Computational Logic, 4(2):260-294, 2003.

[20] A. Paoli, M. Sartiniy, and A. Tilli. Rapid prototyping of
logic control in industrial automation exploiting the gener-
alized actuator approach. In Proc. of ETFA’08, 2008.

[21] M. N. Rooker, T. Strasser, G. Ebenhofer, M. Hofmann, and
R. V. Osuna. Modeling flexible mechatronical based as-
sembly systems through simulation support. In Proc. of
ETFA’08, 2008.

[22] B. Schitz, A. Pretschner, F. Huber, and J. Philipps. Model-
based development of embedded systems. In OOIS Work-
shops, 2002.

[23] T. Strasser, M. Rooker, G. Ebenhofer, I. Hegny, M. Wenger,
C. Sunder, A. Martel, and A. Valentini. Multi-domain
model-driven design of industrial automation and control
systems. In Proc. of ETFA’08, 2008.

[24] K. Thramboulidis. Model-integrated mechatronics - toward
a new paradigm in the development of manufacturing sys-
tems. IEEE Trans. Indust. Inform., 1(1):54-61, 2005.

[25] K. Thramboulidis. Challenges in the development of mecha-
tronic systems: The mechatronic component. In Proc. of
ETFA’08, 2008.

[26] M. Tiller. Introduction to Physical Modeling with Modelica.
Kluwer Academic Publishers, 2001.

[27] Z. ChaoChen, C.A.R. Hoare, and A.P. Ravn. A calculus of
durations. Inform. Process. Lett., 40(5):269-276, 1991.

[28] M. Zaeh, N. Moeller, and W. Vogl. Symbiosis of changeable
and virtual production - the emperor’s new clothes of key
factor for future success? In Proc. of CARV’05, pages 3-10.
Utz, 2005.

[29] S. Zairi, B. Zouari, and L. Pitrac. A formal approach for
the specification, verification and control of flexible manu-
facturing systems. In Proc. of ETFA’07, 2007.



