Behavioral Specification of Reactive Systems Using
Stream-Based 1/O Tables

Benjamin Hummel

Judith Thyssen

Technische Universitidt Miinchen
Institut fiir Informatik
Munich, Germany
{hummelb,thyssen} @in.tum.de

Abstract—A core problem in formal methods is the transition
from informal requirements to formal specifications. Especially
when specifying reactive systems, many formalisms require the
user to either understand a complex mathematical theory and
notation or to derive details not given in the requirements,
such as the state space of the problem. While formalizing a
real-world requirements document, we developed a technique
where not states but signal patterns are the main elements. We
argue that it supports a formalization that is often closer to the
informal requirements and thus provides a smoother transition to
formal methods. As only tables of regular expressions are used
for notation, the technique can easily be understood by non-
mathematicians. Many properties, such as consistency, can be
checked automatically on these specifications. Besides the formal
foundation of our approach, this paper presents prototypical tool
support and first results from an industrial case study.

Index Terms—tabular specification; consistency; streams

I. INTRODUCTION

The goal of this paper is to present a specification technique
for reactive systems that is close enough to textual requirement
documents and simple enough to be understandable and usable
by domain experts, which are not necessarily willing to learn
complicated specification formalisms. Our technique eases the
transition from textual requirements to a formal and analyzable
specification. It was developed during the formalization of a
textual requirements specification provided by Siemens, which
describes a machine from the automation domain.

Textual requirements are usually either formulated as ex-
amples (scenarios) or as rules which the system has to follow.
The latter are either formulated in terms of states (“if the
system is in state X and Y happens, then”) or observations on
sequences of input and output events (“after message A has
been received four times, message B should be sent at least
twice”). While there is ample amount of techniques for the
formalization of scenarios (such as message sequence charts
[1] or UML sequence diagrams [2]) or state based rules (such
as state charts [3], [4]), we think there is a lack of easily
applicable techniques for sequence oriented requirements. This
paper indicates a possible direction for closing this gap.

Parts of this work have been conducted in a project with Siemens Sector
Industry.

Scope: A common approach used for the specification
of embedded reactive systems is based on the decomposition
of the system into hierarchical components whose interface
is described by typed ports which are connected by channels.
Components are either described as composition of other com-
ponents or by a relation on (usually infinite) sequences of input
and output messages. Examples of this are the asynchronous
FOCUS [5] or the synchronous Lustre [6].

While engineers usually easily understand the component
decomposition, the specification of primitive components is
often still a challenge. Reasons for this include that usually the
formalisms are either based on mathematical notations which
need expertise to apply, or require a non-trivial transformation
step from several isolated requirements — usually formulated as
observations of the system — to a consistent description which
incorporates additional information such as the structure of
the internal state space of the component. Because of this we
consider a system decomposition to be given and concentrate
on the specification of the behavior of a single component.

Contribution: In this paper we propose a formalism based
on regular and w-regular languages and a complementing
notation based on regular expressions and tables usable for
the description of functions on streams. In conjunction with
the decomposition approaches mentioned before it can be
used for the description of reactive systems. Since the used
patterns are closely related to informal textual descriptions,
our approach allows a straightforward translation of textual
requirement documents to formal specifications in many cases.
This is further supported by the use of simple concepts
of tables and regular expressions, which allow engineers to
familiarize themselves with the technique more easily. All in
all, our approach results in comprehensive specifications that
can be understood and developed by requirements engineers or
customers since not the same profound mathematical knowl-
edge is needed as for example for logical or automata-based
specifications. Additionally, all relevant properties of these
specifications (e. g., input completeness or consistency) can
be checked automatically, forming the basis for prototypical
tool support.

Outline: The paper is structured as follows: Sec. II
informally introduces our table-based specification technique
by means of an example from the automation domain. In
Sec. III, we relate our approach to existing specification

g |status
= Monitor Iy 5
= oni ser
S OCommand
9]
Fig. 1. Syntactic Interface of the Monitor

techniques before we present its formal semantics in Sec. IV.
Based on these definitions, Sec. V explains the analysis of
the specification for different properties. Sec. VI describes our
prototypical tool implementation and first results from a case
study. There we also discuss the benefits and limitations of
our approach before concluding the paper in Sec. VIL

II. MOTIVATING EXAMPLE

Before we define the syntax and semantics of stream-based
I/O tables in detail in Sec. IV, we illustrate the concepts
by means of a simple example from the automation domain.
We specify a monitoring component (just called monitor in
the remainder) via which a single station can be logged
in and out of a system. The monitor is used to decouple
the user interface from the external station. In the following
paragraphs, firstly the requirements are informally described,
secondly the syntactic interface, i.e., the input and output
ports through which the monitoring station is connected with
its environment, is identified, and lastly the requirements are
formally specified and analyzed by means of stream-based
I/O-tables based on regular expressions as introduced in more
detail in Sec. IV.

Informal Description: The monitor controls the log in
and out of a certain station based on user input. Besides, it
continuously checks the status of the station. The monitor must
fulfill the following requirements:

1) The user can send a request to the monitor demanding
to log the station in or out. In the next time interval the
monitor will send a corresponding signal to the station
if the station is not already logged in resp. out.

2) The station sends its current status (on or off) to the
monitor within regular intervals. The monitor acknowl-
edges the receiving of a status signal within the next
three time intervals.

3) If no status signal from the station is received for five
time intervals, the monitor will send a status request to
the station.

Syntactic Interface: Based on the given informal re-
quirements, we identify the input and output ports through
which the monitor is connected with its environment. Fig. 1
schematically depicts the syntactic interface of the monitor.
The monitor has two input ports, Iy to receive the user input
and Igy,s to receive the status of the station, and one output
port Ocommand Via Which the monitor sends commands to the
station. The respective types of the ports are given in Tab. L
The empty message € is explicitly included in the types in
order to be able to model missing interaction on a port in a
certain time interval.

Table-based Specification: Having defined the syntactic
interface, we build up the table-based specification shown in
Tab. II. The input and output ports define the columns of
the table, while the different rows of the table specify the
different requirements on the I/O behavior of the monitor.
The expressions in the input cells define input patterns by
describing the last messages that have been received on the
input ports until a time ¢. The expressions in the output cells
define corresponding output patterns, i. e., messages that must
be sent in the following time intervals whenever the input
patterns are fulfilled. In order to preserve the mapping between
the informal requirements and the formal specification, the
table comprises an additional column for annotations. The re-
quirements are grouped into two different segments separated
by a double horizontal line: The first segment formalizes the
logging in/out of the station as described in Requirement 1.
The second segment formalizes the status control as described
in Requirements 2 and 3. Different segments must always be
fulfilled simultaneously. The mapping from requirements to
table segments is not necessarily one to one, but rather a design
decision.

To clarify the presented table-based specification, we ex-
plain some of the expressions used in the table. The regular
expression “on €*” models that the last signal received on
port Isuws until time ¢ has been on. The time intervals after
that, only € — meaning no signal — has been received. The
notation z{min, max} is used to describe that a certain signal
or regular expression x occurs min to max times in a row.
Thus, the expression “e{5,5}” formalizes that in the last five
time intervals no signal is received on the respective port.
The character . declares that any not further specified signal
of the corresponding type (including €) is received/sent in
the respective time interval. The expression “.{0,2} ack”
describes that — starting from time interval ¢t + 1 — first for
0 to 2 time intervals any signal can be sent, but at latest in
the third time interval, ack has to be sent.

Analysis of the Specification: So far, the presented spec-
ification exactly reflects the informal requirements. In this
paragraph, we analyze the specification for different properties,
namely input completeness and consistency. Input complete-
ness means that there is no input for which no output reaction
is defined. The analysis for input completeness allows for
detecting underspecification in the requirements. Consistency
of the specification means that the different requirements do
not impose contradicting output reactions.

The specification given in Tab. II is obviously not input
complete. For example, in the first segment it is undefined
what has to happen if the user sends a command but the station
did not yet send its status (Jyser = efon, Igpms = €°11) or if
the user gives no command at all. While it is trivial to see
in this example, for more complicated cases tool support is
inevitable.

The specification is not consistent either. For example, the
second segment requires the monitor to send a req to the
station if no status has been received for some time. If the
user at the same time presses the on button, the first segment

TABLE I
TYPES OF THE PORTS OF THE SYNTACTIC INTERFACE

[Port] Type [Description |
Tuser {on, off, e User request: log station in (on), log station out (0ff), or no user input (¢)
Istatus {on, off, e Status report: logged in (on), logged out (0ff), or no status signal (¢)
Ocommand | {0N, Off,ack,req, e} | Command to station: log in (on), log out (off), acknowledgment of a status signal (ack),
request of a status signal (req), or no signal (€)
TABLE II
INITIAL I/0 TABLE FOR THE MONITOR

l Tyser [Istatus “ OCommand “ Annotation l

on off e* on Requirement 1: When the user input on is received and the last status signal has been
off, the monitor sends the command on to the station.

off on ¢* off Requirement 1: When the user input Off is received and the last status signal has been

on, the monitor sends the command off to the station.

€{5,5} req Requirement 3: When the monitor receives 5 time intervals no status signal (¢), it sends
a request (req) to the station.
on|off .{0,2} ack || Requirement 2: When the station signals a status (0N or off), the monitor has to confirm

this (ack) within the next three time intervals.

requires to send the on command instead, which contradicts
the action required by the second segment.

III. RELATED WORK

Before we define the semantics of our table-based specifi-
cation technique in detail, we relate our approach to existing
work. The number of formalisms for the specification of
reactive systems, including all of their extensions and alterna-
tive semantics, prohibits a complete enumeration. Instead we
give a classification of approaches and discuss only the most
prominent examples. The focus is especially on the transition
from textual requirements to formal specifications.

Linguistic Approaches: One way to ease this transition
is to restrict the language used in textual requirements and
thus reduce the gap to formal specifications. One example are
informal or semi-formal approaches, such as [7], which aim at
improving textual requirement documents for human readers
by providing rules on word order and the structure of the
sentences used. While these approaches help in writing clear
and concise requirements documents, they are no substitute for
formal specifications when formal methods are to be applied.

Specification Techniques: The complementary approach
for making the formalization more easy is to use a specification
formalism that is easy enough to allow specifications to be un-
derstood or even created by the domain experts, which are also
responsible for the requirements. Specification techniques are
usually either state-based or stream-based. The former class
describes the system behavior using some variant of automaton
or state chart, which defines the output depending on the input
and the current state [3], [4]. These techniques are a good
match if the requirements are written down in a state oriented
way. Though requirements focusing on sequences of input
messages can be captured using state-based specifications, the
transition to a state-based formalism usually is a non-trivial
step. The transition includes the definition of a suitable state
space which often is rather seen as an activity of the detailed
specification or implementation phase.

So for requirements described in terms of input and output
sequences, specifications based on streams often are a better
match. They only describe the externally visible (black-box)
behavior. Therefore the system is interpreted as a relation on
sequences (streams) of inputs and outputs and a specification
is a predicate which restricts the valid pairs of I/O streams [5].
One way of describing these predicates is to use some kind of
mathematical logic, which is difficult to use for practitioners.
To hide the complexity of these formalisms, several aids have
been proposed. For example, Dwyer et al. [8] provide a catalog
of common patterns used in temporal logic. Bauer et al. [9]
describe the language SALT, which is an advanced syntax
for temporal logic and can be compiled to (T)LTL. Both
approaches reduce common sources of errors in specifications
written in temporal logic, but still require profound knowledge
of logics.

Another widely accepted technique for the formalization
of interaction sequences especially in the requirements cap-
ture phase of the software development process are message
sequence charts/sequence diagrams [1], [2]. However, they
are mostly used for the specification of exemplary sequences
(scenarios) and thus do not result in a complete description
of the system behavior, which we are aiming at, but merely
express a partial execution trace. Live sequence charts [10],
[11] try to bridge the gap from existential scenarios to univer-
sal specifications and introduce precharts, which are similar to
the input part of our table rows. The same holds for conditional
scenarios and their triggers in triggered message sequence
charts [12]. Our approach differs from these MSC variants,
in that we focus on the specification of single components (as
compared to the interaction between different components).
Furthermore our goal was to find a fairly reduced set of
description elements and a compact notation to ease the
understanding for domain engineers, who often do not have a
computer science background and are easily overwhelmed by
the possibilities of MSCs and their variants.

Tabular Notations: A special class of specification tech-
niques are those based on tabular notations. The usual claim
is that tables are a familiar notation and allow for more
clarity and structure and thus simplify the application of those
techniques. While we use a tabular notation in this paper for
the same reason, contrary to our work, to the best of our
knowledge, all existing approaches are state-based, i. e., a user
of the technique has to divide the state space of the problem
domain in a suitable way. The most well-known specification
technique employing tables is the software cost reduction
method (SCR) [13] which was developed based on the work
of Parnas [14]. SCR expresses complex temporal correlations
using different modes and mode switches, which basically can
be interpreted as states. While these techniques have been
applied successfully [15] and also large amount of work has
been spent on semantics [16] and tool support [17], [18] for
these tables, there are cases where making the state space
explicit is not only non-trivial, but also leads to larger and more
complicated specifications. An example for this case is given
at the end of this section. Parnas himself provides a collection
of table types and abbreviation strategies for organizing and
simplifying functional and relational expressions [19]. In con-
trast to our approach, he aims at providing optimal tables for
each problem. However, the need to understand the resulting,
quite difficult table semantics as well as the fact that the table
entries must be formulated as logical formulas, still requires
profound mathematical knowledge. Besides these two there
are further tabular notations for state machines summarized
in [20].

The Double-Click Detector. We want to conclude this
section by giving a simple (albeit slightly artificial) example
which clearly shows the differences of our approach to other
tabular specification techniques, such as SCR. The examined
system has a single input, which signals for each time tick
whether a button has been clicked or not, and a single output,
which is connected to a light and is used to switch it on and
off. The goal is to detect double clicks and acknowledge it
to the user by light signals. More concretely: If two clicks
(true at input) are found with at least one and at most three
time intervals in between, this is called a double click. If a
sequence of more than two clicks with the above mentioned
delay between consecutive pairs is found, only the first pair is
recognized as a double click (no triple clicks). A recognized
double click is acknowledged by flashing the light three times.

The formalization of these requirements using SCR is
shown in Fig. 2! while the solution using I/O tables is depicted
in Tab. III. Note that in the SCR example the last table is the
most important one, as it defines the mode transitions, while
the other tables basically describe the setup for the detector.
So this is the part, which should be compared to our table,
which formalizes the requirements using only one non-trivial
row. In contrast, SCR requires the introduction of multiple
modes (Wait_Click, Wait_Second), which were not given in the

'We want to thank Ralph Jeffords and Constance Heitmeyer for providing
us with the SCR formalization, which contains 6 additional dictionary tables
not shown here.

Event Function for _DUR1_Recognition_EQ_Had_Double

Events

@F((Recognition = Had_
Double))

@C(time) AND ((Recognition =
Had_Double) AND (Recognition
= Had_Double))

_DURL1 _Recognition_EQ_Ha | 0
d_Double' =

_DUR1_Recognition_EQ_Had_
Double + (time' - time)

Event Function for Flash3

Events

@T(Recognition=Had_Double)

Flash3' = NOT Flash3

Description

Flashing a lamp 3 times upon recognition of a double-click has been abstracted
to emitting a Flash3 signal, i.e. toggling Flash3.

Event Function for _DUR1_Recognition_EQ_Wait_Second

Events

@F((Recognition = Wait_
Second))

@C(time) AND ((Recognition =
Wait_Second) AND
(Recognition = Wait_Second)')

_DUR1_Recognition_EQ_Wa | 0 _DUR1_Recognition_EQ_Wait_

it Second' = Second + (time' - time)
Mode Transition Function for Recognition
Source Mode(s) Events Destination
Mode
Wait_Click @C(click) Wait_Second
Wait_Second @C(time) WHEN (Dur(Recognition=Wait_ Wait_Click
Second) > max_sep-1)
Wait_Second @C(click) WHEN (Dur(Recognition=Wait_ Had_Double
Second) >= min_sep)
Had_Double @C(time) WHEN (Dur(Recognition=Had_Double) | Wait_Click
> max_sep-1)

Fig. 2. Double click detection using SCR.

original requirements, even though the requirement of flashing
three times was completely abstracted away. Of course there
are many cases as well, where SCR has its advantages (espe-
cially if the modes are already mentioned in the requirements).
Hence, the choice of the “right” technique depends on the
requirements to be formalized.

IV. STRUCTURE AND SEMANTICS

Having already presented an example in Sec. II, we give
the formal syntax and semantics for stream-based 1/O tables
in this section. We start with the general structure of such a
table (abstract syntax) followed by its semantic interpretation.
This section is closed by proposing a concrete syntax based
on POSIX regular expressions.

Before, we have to introduce some notation. For an alphabet
(set) X we denote the set of finite sequences over X by ¥* and
the set of infinite sequences by >*, where an infinite sequence
is just a mapping N — X. We call those infinite sequences
streams®. We are using streams for modeling communication
over time by assuming time to be split into intervals which can
be counted by N. A stream associates a transmitted message
with each of those intervals. For a stream s we denote its prefix
of length ¢ by s|t and its (infinite) suffix after removing the
first ¢ elements by s7t. Furthermore, we use s —~ s’ to denote
the concatenation of a sequence s and a stream s’.

2In Lustre these would be called flows.

TABLE III
DOUBLE CLICK DETECTION USING STREAM-BASED I/O TABLES.

l L

I Oout l

false (true false) {3, 3}

*

false{4, 4} true false{1, 3} true

ok

A. Abstract Syntax

Following [5] we describe the syntactic interface of a
component or a system by the ports connecting it to the
environment. A set P of port identifiers is called a typed port
set, if there is a mapping type from those ports to finite sets>.
The syntactic interface is then described by two typed port
sets Pr and Pp describing the input and output, denoted by
(P T » Po).

A syntactic interface (P; » Po) with Pr = {41, ...i,,} and
Po = {o01,...,0m} introduces alphabets ¥; = (type(i;) x
... x type(i,)) of input messages and o = (type(o1) X ... X
type(o,,)) of output messages. The alphabet of input/output
pairs is written as Y70 = X X Y. In this framework we can
specify components by relations on input and output streams
or more directly as a subset of Z“IJ/O. The tables introduced in
this paper are just a means of specifying these sets.

Definition 1. For a syntactic interface (Pr » Po) a stream-
based I/O table 7 is a set of segments, where each segment
S eT isatuple (I,0,r) such that

o 1 is the size of the segment (the number of rows),

o I is a sequence of length r of regular languages over the
input alphabet ¥ (i.e., I € (P(X3))"),

o O is a sequence of length r of w-regular languages over
the output alphabet Yo (i.e., O € (P(X§))").

Each tuple (Ii,, Oy) with k € {1,...,r}, consisting of the k-th
elements of I and O, corresponds to a row of S.

This definition captures the structure of the tables given
in the example where a table consists of several segments
(parallel requirements) which in turn consist of ordered rows
(alternating requirements) relating inputs to outputs. We do
not include the annotation column in the formalization, as it
is only used for documentation. The limitation to (w-)regular
languages is a prerequisite needed to show decidability of
input completeness and consistency in Sec. V.

B. Semantics

As indicated before, the semantic meaning of a component
with syntactic interface (P; » Pp) is described by its valid
(infinite) input/output behaviors, a subset of X},,. This is
equivalent to a relation between input streams (2) and output
streams (38). The valid I/O streams for a table segment are
described in the following definition.

3Here we just identify a type with its carrier set. Additionally we require
a message to be present at each port at every time interval. Thus to model
missing interaction, the empty message € has to be part of the type (resp. its
carrier set).

Definition 2. The valid 1/O behaviors of a segment S =
(I,0,7) of a stream-based 1/O table with syntactic interface
(Pr » Po) are described by the set L(S) defined as

{(z,y) € 2¥ x DYVt e N,Vk € {1,...,7} :
et e L\ U1 I = ylt € Oy} .

The implication captures the idea that the row of a segment
whose input pattern matches at a given time ¢, determines the
output following afterwards. The set difference makes sure that
at any time only the first matching row is in effect. As a table
consists of multiple segments which restrict the valid inputs
and outputs at the same time, its valid behaviors are just the
intersection of the behaviors allowed by the segments.

Definition 3. Let T be a stream-based 1/0 table with syntactic
interface (Pr » Pp). Then the valid 1/O behaviors of T are
given by the set

SeT

An alternative interpretation of a row of the table is that
it disallows all streams which can be composed of a prefix
whose input part matches the “left side” of the row, and a
suffix whose output part does not match the “right side” of
the row. Thus, for a segment S = (I, O, r) the k-th row limits
the valid I/O behaviors to

Ik XEH) ~ (BY K O)

where X denotes the building of pairs of equal length words,
ie, Li XLy = {(x,y) € L1 x Ly | |z| = |y|}, and L the
complement of a language L. This observation leads to an
alternative definition of the valid I/O behaviors of a table.

Corollary 1. Let T be a stream-based I/0 table with syntactic
interface (P;r » Po). Then

T k—1
L = N N\ UJnesy) -~ EFEo) .

(I,0,r)eT k=1

From Def. 2 it can also be seen that for the I/O behaviors
of our specifications the inputs encountered up to some time
t only influence the output starting from time ¢ + 1. Stated
differently, this means that the output at any time ¢ only
depends on the input until time ¢ — 1 and not on future input.
This property for behaviors is known as strong causality and is
a crucial prerequisite for composability of components in asyn-
chronous models of embedded systems, such as FOCUS [5]°.

“4For synchronous models the semantics of the tables could be tweaked to
yield weakly causal behaviors, where the output may also depend on the input
read at the same time.

While this property seems quite natural, many formalisms,
such as relational specifications, easily allow the specification
of systems which by accident know the future.

C. Concrete Syntax

From a theoretician’s view the previous two sections cov-
ered everything relevant for the proposed specification tech-
nique. For practical purposes the concrete representation used
for writing and manipulating specifications is of paramount
importance. In fact, the described technique is rooted in
its table-based representation, while the semantics has been
detailed afterwards.

An example of our notation has already been given in
Sec. II, so we only flesh out the details here. The primary
structure is a table, where the columns of the table correspond
to the ports of the component and the rows define requirements
on the behavior. The columns are grouped into an input part
(comprising the input ports) and an output part (comprising the
output ports). The rows of the table are grouped into different
segments (separated by double horizontal lines), which have to
be respected in parallel. The order of rows within the segments
determines their priorities, i.e., for each time only the first
row in a segment whose input part matches the input read
so far constrains the output. Alternatively, this priority could
have been abandoned and instead input languages within a
segment could have been required to be disjunct. However,
this priority arrangement of requirements within a segment
allows for a more comfortable way of specifying the behavior
of components, as for example exceptions can be specified in
the first rows and must not be considered in the following
rows specifying the normal behavior. Requiring disjunct input
languages often results in very complex patterns and conse-
quently contradicts our aim of obtaining a specification that is
easy to write and understand.

Within each cell of the table is a regular expression using
the alphabet defined by the type of the corresponding column’s
port. We follow the syntax of the POSIX extended regular
expressions here, as this is well-known to many engineers from
tools like egrep or search boxes in text editors and thus requires
only little learning effort from its users.

For the interpretation of those regular expressions, let
the syntactic interface of a specification be ((i1,...,%,) »
(01,...,0m)) and p1,...,pn,01,...,0, the regular lan-
guages described by the expressions of the k-th row. The input
language I, is

(type(ir)* —~ p1) W --- K (type(in)" —~ pn)

i. e., the currently read input is matched “from the right”. For
the output language O) we use

(01 — type(ol)w) & tee & (Um — type(om)w) 5

i.e., the future output has to be matched “from the left”.
Obviously, by this simple scheme we loose some expressive
power, as we are not able to express infinite restrictions on
the outputs and are limited in modeling dependencies between
inputs from different ports. However, it turns out that even

with these limitations many of the requirements discovered
in practice can be formalized. Nonetheless, we are carefully
looking into extensions of the concrete syntax which allow
for more complex input and output languages as described in
Sec. VI-C.

V. ANALYSIS OF I/0O TABLES

The formally funded specification of functional require-
ments by tables as shown in the previous section allows us
to automatically check several properties of the specification,
which would not be possible when working on requirement
specifications written in natural language. Some of the prop-
erties described below, such as consistency, would not have to
be checked when using other formalisms (e. g., automata), but
the transformation from requirements into these specifications
requires more effort compared to the technique showed here.
Thus our technique is more suitable for the early specification
phase, as it allows for a smoother transition from requirements
to formal models.

A. Input Completeness and Reachability

The first property we consider is input completeness, i. e.,
whether a segment of the specification defines a reaction
for every possible input. This usually indicates intentional or
unintentional underspecification in the original requirements or
an error during the formalization step. To decide whether this
indicates an error or needs to be clarified by the stakeholders,
it is important to find such undefined inputs.

Definition 4. Let S = (I,0,r) be a segment of a stream-
based I/O table with syntactic interface (P;yw Po). Then S is
called input complete, iff ,_, Ir = X7.

According to this definition a segment of a table-based
specification is input complete if every possible input situation
(i.e., X7) is covered by at least one input pattern of the
different rows of the segments. The specification 7 is input
complete iff all its segments S € 7 are input complete.

Another flaw in the specification which can be recognized
by looking only at the input is reachability, which means that
certain parts in the specification are unused which again indi-
cates errors in either the requirements or in their formalization.
More precisely a row of a segment is unreachable if all inputs
handled by this row have already been handled by the rows
above.

Definition 5. Ler (I,0,r) be a segment of a stream-based
I/0 table with syntactic interface (P » Pp). Then we call
the row j € {1,...,r} unreachable, iff I; \ U._} I, = 0.

As I is a finite sequence of regular languages, the union
and comparison operations can be calculated efficiently, only
the complementation requires the conversion to deterministic
automata which involves a potentially exponential blow-up.
This leads to the following result.

Lemma 1. Checking for input completeness and unreachable
rows of a table segment is decidable. If the involved languages

are given as regular expressions, both can be computed in
exponential time.

B. Consistency

As we are using constructs in our tables which are con-
ceptionally nearer to requirements than to an implementation,
we also inherit their drawbacks. In particular, this means
that we can specify systems which are not realizable due to
contradictions in the specification. There are two main sources
for inconsistencies in our setup. One are inconsistencies within
one section which are caused by output patterns restricting the
future in a way not consistent with later actions required. This
can only happen if the used output patterns make assumptions
about more than one future time interval. The second source
are inconsistencies in the reactions enforced by two parallel
sections. We call a specification inconsistent, if there are inputs
for which no output is valid according to the specification.
Consistent specifications sometimes are also referred to as
input enabled, as they can produce an output for any input
sequence.

Definition 6. Let 7 be a table-based I/O specification with
syntactic interface (P; » Po) and L(T) the language of all
valid /O histories. We call T consistent, iff for each input
history i € X there is at least one output history o € g
with (i,0) € L(T). Otherwise T is called inconsistent.

The next result demonstrates how consistency checking can
be automated at least in theory.

Lemma 2. Checking the consistency of a stream-based 1/O
table is decidable.

Proof: Coroll. 1 gives a characterization of the valid I/O
behaviors of a table using only set operations. All of the
operations used are computable and closed for (w-)regular
languages [21], [22]. Hence, the consistency check is only a
projection to the input alphabet, followed by complementation
and an emptiness check. Thus checking for consistency is
decidable.]

Using the proof verbatim for implementing a consistency
checker would result in triple exponential complexity. A more
efficient solution is presented next.

C. Practical Consistency Checking
for Safety Properties

The consistency check given before has two major draw-
backs for practical purposes. Firstly, the complexity due to the
repeated complementation makes it practically infeasible for
any non-trivial specification. Secondly, the implementation of
a complementation of w-regular languages, while theoretically
solved, is quite a challenge in practice. Here we introduce
a construction based on deterministic finite automata (DFAs)
which works if the specification contains only safety proper-
ties.

A DFA is a tuple A = (£,Q, ¢°, F,§) with finite alphabet
3, state set (), starting state ¢° € Q, and final states F' C Q.
The total transition function d : Q X ¥ — () is inductively

extended to words by (g, uv) = §(6(q,u),v). A finite word
w is accepted by a DFA, if §(¢",w) € F. The set of all words
accepted by A is denoted by L(A).

To use DFAs for this problem, we do not construct an
automaton which accepts all valid I/O histories but rather finite
prefixes of invalid histories. Thus a valid run of the system
would try to navigate around the final states of the automaton.
As violations of liveness properties are often only visible in
infinite streams this solution only works for safety properties.
Again we first deal with individual rows of the specification.
The key idea is to “start” the automaton for invalid output
whenever the input of the row is recognized. However, as the
execution of the output may take multiple steps and we could
match the input more than once in this time, we have to be
able to “start” the automaton more than once as well. This can
be achieved using the well-known power set construction.

Lemma 3. Ler (I;,0) be a row of a stream-based 1/O
table with syntactic interface (Pr » Po) and Ar = (31, Q1,
q?, Fr, 5[) and Ap = (Eo, Qo, q%, Fo, (50) DFAs such that
It = L(Ar) and Oy, = L(Ao) —~ X§. Then there is a DFA
with at most |Q 1|2‘QOI states recognizing all finite violations
for this row.

Proof: We may assume the automaton Ao to be minimal
and denote by sp € o its sink state, i.e., the only state
from which no final state is reachable. If no such sink state
exists, Ap accepts any word and the row can be ignored. The
resulting row automaton Ap is then given by (X; x X, Q1 X
200 q% Q1 x Fg,dg), where ¢% = (¢%,0) if ¢¥ ¢ F; and
q% = (¢9,{q%}) otherwise, Fr = {f C Qo | so € f}, and
dr defined by

dr((ar, Qo), (ar,a0)) =
(6r(qz,ar),
({60(g0,a0) | g0 € Qo}U{dd | ar € F1}) \ Fo) .

The transition function dr((qr, Qo), (ar,a0)) calculates the
subsequent state (pr, Po) € Qr x29° based on the transitions
of the automata A; and Ap. The first part p; simply reflects
the state of the input automaton A; having processed the input
as. In contrast to the input automaton, the output can be in
different states simultaneously. For each state go € Qo the
subsequent state of the output automaton Ay is calculated
separately. Besides these states, the state g2 is included in
Po whenever the input automaton reaches an accepting state.
Informally, this means that the input pattern is matched and the
output automaton has to be started again. All accepting states
of Ap have to be removed from this set, as the guarantee of
the output has been fulfilled in these states. A finite violation
of the required I/O behavior occurs, iff at least one of the
accumulated output transitions results in the sink state so,
i. e., the corresponding output constraint can not be fulfilled
anymore. Accordingly, in this case the resulting state (p;, Po)
is an accepting state of Ap since sp € Po. [|

Using this automaton we can again construct the violations
for the segments and the entire specification using the union
of the row automata (assumed the row input languages in

a segment are disjunct®). Checking for inputs without valid
outputs can then easily performed by iteratively finding “bad”
states, which will lead to accepting or other “bad” states
for certain inputs regardless of the output produced by the
system.This can be easily performed in polynomial time,
leading to the following corollary.

Corollary 2. Checking the consistency of a stream-based I/O
table only describing safety properties can be performed in
doubly exponential time, if the involved languages are given
as regular expressions.

The doubly exponential complexity is due to the conversion
of the languages to DFAs followed by the power set construc-
tion. However, these operations are performed on automata
which are rather small and in practice the exponential case
seldom occurs. Additionally, all operations involved can be
implemented easily compared to the corresponding operations
for w-regular languages.

VI. PRACTICAL APPLICATION

This section introduces prototypical tool support for our
technique and summarizes a small industrial case study. The
experience from both is discusses at the end.

A. Tool Support

As a basis for a small case study presented later, as well as
for getting practical results on the efficiency of the analysis
algorithms, we implemented an editor for our specification
technique as an extension of the modelling tool AF/STEM®.
AF/STEM is a specification environment for spatio-temporal
systems in the domain of automation engineering. Systems
are described by means of components with the syntactic
interface given by ports and the semantics usually given by
an automaton. We implemented stream-based I/O tables as
an alternative way of specifying a component and provided
editor support as well as an implementation of checks for input
completeness and consistency.

A naive implementation based on the automaton construc-
tion presented in Sec. V-C is not feasible, as the alphabet of
the automata involved usually is rather large. To circumvent
this we used BDDs for encoding the transition labels, thus
the number of transitions is bounded by the square of the
number of states, which turned out to be of reasonable size
for real world examples. An alternative would have been
the transformation of our tables to a suitable solver (e. g.,
MONA [23]), but our implementation has the advantage to
allow direct access to the constructed automaton, which can
be used for further steps, such as generation of test cases or
controller code.

As there are no reference models to be used and our
implementation is still rather simple with no optimizations or

SWe may assume that the languages Iy,...,I. are pairwise dis-
junct; otherwise we could transform the segment into the segment S =
((Iy,...,1),0,r) with I; = I; \ i;ll I}, which is semantically equiva-
lent and has the desired property.

Shttp://af3.in.tum.de/index.php/ AF/STEM

heuristics, we did not perform major benchmarks. However,
even the largest tables of our case study, which is detailed in
the next section, could be checked for input completeness and
consistency within only a couple of seconds.

B. Case Study

To learn about the applicability of our technique, we formal-
ized a considerable part of a textual requirements specification
provided by Siemens, which describes a machine from the au-
tomation domain (already mentioned in Sec. I). The formalized
part describes the controlling of different hardware compo-
nents of a bottling plant, dealing with transport, decollating,
and routing of bottles through the plant.

The resulting specification consists of 51 tables and 60
segments with between 4 and 10 rows and 3 to 7 columns
each. Our simple approach turned out to be powerful enough
to formalize all of the typical requirements of discrete event-
based systems. Moreover, the case study showed that a large
part of the requirements could be formalized by very simple
patterns. As the relation between tables (51) and segments (60)
indicates, it turned out to be more convenient to decompose a
functionality into further sub-components instead of specifying
complex relations by different segments. While segments
are defined over the interface of the whole component, the
advantage of the decomposition into sub-components is that
the interfaces of the sub-components only comprise a subset
of relevant channels. Therefore the tables stay considerably
small.

In this case study, all requirements could be formalized
with the presented method. However, for some requirements a
purely sequence oriented approach was not applicable. Instead
we introduced states as described in the next section. An
example for the use of states is the decollating of bottles for
a certain processing step (e. g., filling, draining, topping). A
first sensor indicates if there is a bottle ready to be decollated.
To decollate a bottle the previous bottle has to be processed
and must have passed a second sensor. The processing of
the bottle takes an indefinite amount of time. While we were
unable to formalize the fact that no bottle can be decollated
while the respective sector of the plant is occupied using only
sequences, we easily succeed by introducing a state capturing
this information.

On the other hand — as expected — counting could be realized
very easily by means of our tables. In the case study, we used
this to model the change of the operation mode of the plant
from automatic to manual or vice versa. In this case, some
components have to be blocked for a certain amount of time
(e. g., five time intervals) to assure that the running operations
are finished properly.

Our overall impression was, that despite its simplicity, our
approach is suitable to describe not only academic examples
but also real discrete event-based systems. Besides, the formal-
ization showed that the underlying textual specification was
incomplete, vague and ambiguous. The simple structure and
syntax of the tables helped, when discussing details of the

specification with engineers, who could understand the tables
after only a short introduction.

C. Discussion

This section summarizes some findings and consequences
from our notation and experiments.

Dealing with States: As argued before a major advantage
over other state- or table-based specifications is that no state
space has to be explicitly constructed beforehand. On the
other hand portions of the requirements specification might
already mention states explicitly in their description or can
be simplified considerably when introducing states. We can
easily integrate states in our tables by introducing an additional
input and output channel which carries the state information.
These channels are not externally available, but can be thought
of as being connected internally by a loop. Thereby, our
specification technique offers not only access to the actual state
but to the whole state history. We can model state variables
using the same pattern.

Language Extensions: Our experiments showed that syn-
tactic sugar for expressing dependencies between entries in
different cells of a table row are quite useful. As long as
we only extend the concrete syntax, the presented results
stay valid. Care has to be taken to not lose simplicity by
overloading notation. An enhancement that has proved useful
is to optionally require the matched input of a row to be of
same length for all columns. This can express that certain
events have to occur at input channels at the same (previous)
time. To include it in our tables, only a minor modification in
the construction of the row automata is required. Furthermore,
operations on signals (e. g., output is sum of inputs) are very
complicated to describe with our approach. To overcome this
problem, we plan to expand the used regular expressions by
variables globally bound per row.

Size of the Type’s Carries Set: While our specification
technique can deal with types having large or even infinite
carrier sets (such as integer numbers), our analysis procedures
share the problems of model checkers, namely the exponential
dependency on the input alphabet’s size. This was not a
problem in our case study, as all components dealt with simple
signals only. However, when dealing with measurements, as
for example speed, our analysis algorithms will not scale.
One approach would be the use of abstraction or quantization,
i.e., instead of dealing with a speed signal we would only
differentiate between low, normal, and high velocity. One
could also try to automatically find a suitable abstraction from
a table, but we did not yet investigate this.

VII. CONCLUSION

In this paper, we presented a simple technique for the
specification of the behavior of reactive control systems. The
technique is based on tables of regular expressions which
makes the specifications easier to use for non-mathematicians.
The very small set of primitives and the usage of well-known
regular expressions support fast learning and understanding
of these tables. It turns out that the pattern-based description

often is closely related to textual requirement specifications.
Consequently, our approach provides a smoother transition to
formal methods. At the same time the formal foundation of
those tables allows for an extensive analysis of the specified
requirements which can be performed automatically as pre-
sented in this paper.

So far we only showed how to formalize functional require-
ments of a single component. If systems become larger and
more complex, a decomposition of the system’s functionality
into a hierarchy of sub-functionalities is inevitable. The idea
is to specify the different sub-functionalities independently
by different I/O-tables and combine them afterwards. As
described in [24], services are a suitable means to structure
the functionality during the requirements engineering phase.
Each service models a separate usage functionality of a system
observable at its boundaries. Services may overlap, i.e., be
defined over the same input or output ports. As a consequence,
they might intentionally or unintentionally influence each other
(feature interaction). We are currently working on theoretical
and methodological extensions of our technique for dealing
with the questions arising in the context of service-based
specifications.

REFERENCES

[1] ITU-T, “Recommendation Z.120. Message Sequence Charts,” Interna-
tional Telecommunication Union, Geneve, Tech. Rep. Z-120, 2000.

[2] Object Management Group, “UML 2 superstructure specification,” pp.
403454, 2004. [Online]. Available: http://www.uml.org/

[3] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comp. Prog., vol. 8, no. 3, pp. 231-274, 1987.

[4] M. von der Beeck, “A comparison of statecharts variants,” in Proc. of
FTRTFT. Springer, 1994.

[5] M. Broy and K. Stglen, Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305-1320, 1991.

[7]1 C. Denger, D. M. Berry, and E. Kamsties, “Higher quality requirements
specifications through natural language patterns,” in Proc. of SWSTE’03.
IEEE, 2003.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proc. of ICSE’99. IEEE,
1999.

[9] A. Bauer, M. Leucker, and J. Streit, “SALT—structured assertion

language for temporal logic,” in Proc. of ICFEM’06. Springer, 2006.

W. Damm and D. Harel, “LSCs: Breathing life into message sequence

charts,” Jerusalem, Israel, Tech. Rep., 1998.

M. Brill, W. Damm, J. Klose, B. Westphal, and H. Wittke, “Live

sequence charts: An introduction to lines, arrows, and strange boxes

in the context of formal verification,” in SoftSpez Final Report, 2004.

B. Sengupta and R. Cleaveland, “Triggered message sequence charts,”

IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 587-607,

2006.

C. L. Heitmeyer, J. Kirby, B. G. Labaw, and R. Bharadwaj, “SCR*: A

toolset for specifying and analyzing software requirements,” in Proc. of

CAV’98. Springer, 1998.

P-J. Courtois and D. L. Parnas, “Documentation for safety critical

software,” in Proc. of ICSE’93. 1EEE, 1993.

C. L. Heitmeyer, “Applying practical formal methods to the specification

and analysis of security properties,” in MMM-ACNS, 2001.

R. Janicki and R. Khédri, “On a formal semantics of tabular expres-

sions,” Sci. Comput. Program., vol. 39, no. 2-3, pp. 189-213, 2001.

C. L. Heitmeyer, M. Archer, R. Bharadwaj, and R. D. Jeffords, “Tools

for constructing requirements specifications: the scr toolset at the age of

nine,” Comput. Syst. Sci. Eng., vol. 20, no. 1, 2005.

(10]

(11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

D. K. Peters, M. Lawford, and B. T. y Widemann, “An IDE for software
development using tabular expressions,” in Proc. of CASCON’07. 1BM,
2007.

D. L. Parnas, “Tabular representation of relations,” Telec. Research
Institute of Ontario, CRL Report 260, 1992.

M. Herrmannsdorfer, S. Konrad, and B. Berenbach, “Tabular notations
for state machine-based specifications,” Crosstalk, vol. 21, no. 3, pp.
18-23, 2008.

J. E. Hopcroft and J. D. Ullman, Introduction to automata theory,
languages, and computation. Addison-Wesley, 1979.

'W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics, 1990, pp.
133-192.

J. G. Henriksen, J. L. Jensen, M. E. Jgrgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm, “Mona: Monadic second-order logic in
practice,” in Proc. of TACAS’95. Springer, 1995.

A. Harhurin and J. Hartmann, “Towards Consistent Specifications of
Product Families,” in Proc. of FM’08. Springer, 2008.

