
A Semantic Model for Computer-Based Spatio-Temporal Systems

Benjamin Hummel
Technische Universität München

Institut für Informatik
Garching bei München, Germany

hummelb@in.tum.de

Abstract

Over the last decades lots of techniques have been devel-
oped for modeling, analyzing, and verifying software. For
embedded or computer-based systems, however, the soft-
ware is only one part of the entire system, which often has
little or no meaning when examined in isolation without
considering the remaining parts of the system. This makes it
hard, if not impossible, to judge the correctness of software
without a thorough understanding of its environment.

A natural solution to this problem is to not only capture
the software part but the entire system by suitable design
models. However, to be useful such a model has to be sup-
ported by semantics which unambiguously define its mean-
ing. In this paper we present such a semantic model which
captures temporal and spatial aspects of a system, which
are important if the system deals with the manipulation of
rigid objects, as typically found in the domain of industrial
automation.

1. Introduction

When dealing with embedded or computer-based sys-
tems, usually it is not sufficient to treat the software part
alone, but rather the entire system has to be considered. This
includes mechanical and electronic parts which are used to
perceive and manipulate its surroundings, but also assump-
tions about the environment, such as the presence of grav-
ity or a certain amount of air pressure. Such an integrated
view is already needed in the requirements phase, where re-
quirements are usually not formulated with respect to the
software but with respect to the complete system. Often
it is not even possible to break requirements down to soft-
ware requirements early on, as it might not be clear before
the design phase which parts of the system’s functionality
are performed by some clever interaction of mechanics and
electronics or rather realized mostly in software. The prob-
lem does not become easier, when it goes down to testing

or formal verification, as the output signals generated by
controller software are hardly interpretable without a deep
understanding of the complete system.

To distribute information about the system between en-
gineers of the different disciplines involved, including soft-
ware and systems engineers, we argue that it should be cap-
tured by semantically founded models. We emphasize the
semantic foundation here, as it ensures that everyone has the
same interpretation of a model and allows the application of
advanced analysis and verification techniques, including the
generation of test-cases or property proofs by model check-
ing. Existing modeling techniques however either fail to
capture the behavioral aspects of the system, which are usu-
ally the most important from a software engineer’s perspec-
tive, or lack a formal semantic foundation. The first class
includes many of the CAD models used in mechanical and
electrical engineering, while the second class includes well-
known industrial languages, such as SysML [17].

As the aspects of a system which should be captured in
a design model are numerous, it is complicated to build a
modeling technique which can express all off them. So as a
first step we concentrate on spatio-temporal systems, where
we describe spatial properties of a system over time (and
of course computation and communication). For many in-
teresting domains such models are sufficient to describe the
behavior of the entire system, as other physical quantities,
such as temperature or electromagnetic effects, do not sig-
nificantly influence these systems or can be neglected under
normal operating conditions. An example for this is indus-
trial automation, where the purpose of a system is mostly to
transport, manipulate, and assemble certain products. This
is performed mostly by spatial effects, i.e., by pushing other
objects or intersecting the ray of a photoelectric barrier.

Contribution This paper introduces a semantical basis
for modeling computer-based spatio-temporal systems by
extending the ideas of stream-based interface descriptions
as introduced in [4]. The semantic model captures the po-
sitions of objects over time and supports basic concepts re-

quired for the modeling of realistic systems, such as the col-
lision between solid objects, the detection of objects in cer-
tain locations, or modeling of dependent motions (motion
hierarchies). At the same time the usual primitives needed
to express computation and communication are available.
As our focus is on space, we use a simple discrete model
of time, but support both discrete and continuous models of
space. We describe a set of operations, which can be used to
systematically build spatio-temporal systems from smaller
parts and thus support the system decomposition and reuse
on the model level. Using our model we formalize relevant
properties of spatio-temporal systems.

Outline The next section discusses work related to the
topic of this paper. In Sec. 3 we introduce a formalization of
space to build upon, followed by the presentation of the se-
mantic model in Sec. 4. To clarify the concepts, an example
is provided in Sec. 5. Sec. 6 discusses and formalizes prop-
erties of spatio-temporal systems, before we finally give a
perspective to future work and conclude in Secs. 7 and 8.

2. Related work

The number of modeling approaches for embedded soft-
ware and computer-based systems proposed over the last
decades is overwhelming. Thus we concentrate on those
techniques, we consider the most prominent in the field or
most relevant to our work. Additionally, techniques with-
out clear semantics, such as SysML [17], are not considered
here.

The most general models are offered by the area of hy-
brid systems, which combine discrete and continuous as-
pects. Most work focuses on different flavors of hybrid
automata [11, 16], although there are also attempts of us-
ing hybrid process algebras [5] for reasoning about sys-
tems. While those models have shown their strength when
describing control theoretic problems or including contin-
uous time in discrete systems, their application to spatio-
temporal systems is not straight forward, as the notion of
space allocation, collision, or complex transformations have
to be mapped to the rather primitive (although expressive)
means available in these models.

For the explicit treatment of space both algebraic and
logic approaches have been proposed [6, 15] and in [8] spa-
tial logic is combined with temporal logic to form a spatio-
temporal logic. However, those papers either concentrate
on capturing spatial knowledge and reasoning about it or
explore complexity and decidability of these logics. Our
focus is more on the specification of system behavior, i.e.,
instead of capturing incomplete knowledge we intend to de-
scribe all possible reactions of a system. Additionally, the
cited work does not include computation and communica-
tion, as is needed when describing computer-based systems.

Nonetheless, these techniques can form a basis for the ana-
lysis of spatio-temporal systems.

In the area of mechatronic systems modeling the systems
are either described at an abstraction level that completely
neglects spatial aspects [13, 19] or by using physical simu-
lation systems, such as Modelica [20, 7], where even phys-
ical effects like friction or mass inertia are included. For
design models we consider the intermediate approach most
appropriate, as for many systems spatial effects (collision,
activation of sensors) are vital for performing correctly, but
on the other hand the effort needed to build a physical sim-
ulation is too much in the design stage.

Finally, all techniques used for modeling (embedded)
software systems, such as Statecharts [10], the synchronous
LUSTRE [9], or the asynchronous FOCUS [4], can to some
extent be used for modeling spatio-temporal systems by
encoding spatial properties by suitable data structures and
treating them as data state. However, this encoding is
rather tedious and obstructs the view to the underlying prob-
lem. By extending these formalisms, the support for spatio-
temporal systems can be greatly improved. Actually the
work presented here can be seen as a spatio-temporal ex-
tension of FOCUS.

3. Formalizing space

When reasoning about space, we first need a formal
model of space. We model space by a tuple (V, ./,t, T),
where

• V is a set of volumes with zero element 0V ∈ V ,

• ./ ⊆ V × V is called collision relation,

• t : V × V → V is the volume union operator,

• T ⊆ {V → V } defines valid volume transformations.

We require the collision relation to be reflexive for non-
empty volumes, the empty volume to collide with nothing,
and symmetric, i.e., for all u, v ∈ V

v 6= 0V ⇔ v ./ v ,

¬(0V ./ v ∨ v ./ 0V) ,

u ./ v ⇔ v ./ u .

Additionally (V,t) has to be a commutative monoid with
identity element 0V and t is required to be idempotent. Fi-
nally the following law of distributivity has to hold for all
u, v, w ∈ V :

u ./ v ∨ u ./ w ⇔ u ./ (v t w)

As a special case this implies that v ./ (v t u) holds, i.e.,
adding more space to an object will not make it smaller.

For the transformation functions in T we require them
to be closed under composition (denoted by ◦1), i.e., {t1 ◦
t2 | t1, t2 ∈ T } ⊆ T . Additionally transformations may
not distort volumes, which means that for all T ∈ T and
u, v ∈ V

u ./ v ⇔ T (u) ./ T (v) ,
T (u t v) = T (u) t T (v) .

Intuitively each function in T describes a transformation
of one or more volumes, which will later be used, e.g., to
encode the current amount of rotation of a machine part.

Using these basic axioms we can introduce the over-
approximation relation v⊆ V × V defined by

u v v :⇔ ∀w ∈ V : w ./ u ⇒ w ./ v ,

which states that v over-approximates u, if each object
colliding with u also collides with v. So spatial over-
approximation can be interpreted as a kind of super set re-
lation and forms a partial order on V .

An example for a space fulfilling all of these require-
ments is (V, ./,t, T), where V is the set of compact sub-
sets of R3, 0V = ∅, ./ := {(v1, v2) ∈ V ×V | v1∩v2 6= ∅},
t(v1, v2) := v1 ∪ v2, and T the set of translations and rota-
tions in R3. This example captures the intuition about Eu-
clidean space with rigid objects (i.e., a transformation does
not change the size of an object). Other examples where t
and ./ are not reduced to set operations can be found in the
area of constructive solid geometry (CSG) [12].

We always describe spatio-temporal systems with re-
spect to a single space, which has to be declared before-
hand. For the remainder of this paper we assume a space
(V, ./,t, T) to be fixed.

4. Modeling spatio-temporal components

This section introduces the semantic framework we are
using for modeling spatio-temporal systems. The entire sys-
tem is itself treated as a so called spatio-temporal compo-
nent which may either be described directly (atomic compo-
nent) or by composition of other components. This allows
the decomposition of larger systems to manage their com-
plexity, but also supports the creation of a library of basic
building blocks which are used and reused over different
models.

We will start our presentation by recapitulating the foun-
dations for our model followed by an introduction to the
notion of an interface for spatio-temporal components. The
remaining subsections then describe operators which can be
used to construct new components from other components.

1We use the definition of (g ◦ f)(x) := g(f(x)) here; some textbooks
use the reverse definition.

4.1. Preliminaries

Before presenting our model, we introduce some con-
cepts and notation. For a set Σ we denote its power set by
P(Σ) and the set of infinite sequences over Σ by Σ∞ :=
{N → Σ}, i.e., they are identified with mappings N → Σ.
We call those infinite sequences streams. For a stream s
we denote its prefix of length t by s ↓ t and instead of s(t)
we write s.t most of the time. We use f |D to denote the
restriction of a function f to the new domain D.

We assume a set TYPES of type symbols and universe
DATA of all possible data values. Here we are only inter-
ested in assigning the set of valid data elements to a type
(its carrier set) by means of a function car : TYPES →
P(DATA). More elaborate type systems might require a set
of operations for each type and relationships between types.

We call a set L of channel labels a typed channel set, if
there is a mapping typeL : L → TYPES, which assigns to
each channel its type. For a typed channel set L, a channel
valuation is a type correct mapping from channels to data
streams, so the set of all channel valuations of L, denoted
by ~L, is given by

{x : L → DATA∞ | ∀l ∈ L : x(l) ∈ car(typeL(l))∞} .

With these concepts a component in [4] is described by
two typed channel sets I and O (its syntactic interface de-
scribing input and output channels) and a relation between
~I and ~O (its semantic interface). The reason to use streams
for describing the semantic interface is to capture the flow
of time, i.e., the streams are interpreted as input and output
values over time.

4.2. Component interfaces

Spatio-temporal components are described by their syn-
tactic and semantic interface. For atomic components this
means that the function introduced below has to be de-
scribed by means of mathematical notations or some other
suitable description technique, such as some adapted au-
tomaton model. For operators on components this indicates
that the resulting component has to be expressible in terms
of this interface description.

We model the interface of spatio-temporal components
by their data interface (i.e., input and output ports), the
space they allocate (called parts), detectors (volumes de-
tecting the presence of other parts, which is modeled by a
collision between the volumes of the part and the detector),
and movers which may affect the position of other com-
ponents, i.e., other components can be connected to these
movers and their position is then affected by the component
and the state of its mover. For mechatronic systems, detec-
tion areas correspond to the working area of sensors (e.g.,
the light ray of a photoelectric barrier or the area covered by

a proximity sensor), parts model the rigid elements (such as
steel frames or the housing of sensors), and movers repre-
sent actuators, such as pneumatic cylinders or motors with
gearboxes.

Following [4] we distinguish the syntactical interface,
which describes the static aspects of a component (which
ports and parts are present) and the semantic or behavioral
interface (what reactions are expected for given stimuli).
The interface description of a component contains all de-
tails required to use it and analyze its behavior, but does not
disclose any details on how this behavior is achieved (im-
plementation).

The syntactic interface of a spatio-temporal component
C is described by a tuple (I,O,D, P, M), with typed chan-
nel sets I and O, and sets of detectors D, parts P , and
movers M . All of these sets can be interpreted as labels
used to identify the respective items.

The semantics of C are defined by a function

C : ~I ×A(D) → P(~O × ~D × ~P × ~M × V ∞) ,

where

• ~I and ~O are channel valuations as introduced before,

• A(D) := {D → B∞} are detector activations2,

• ~D := {D → V ∞} are detector positions/volumes,

• ~P := {P → V ∞} are part positions/volumes,

• ~M := {M → T ∞} are transformations exercised by
movers, and

• the final V ∞ marks the so called “forbidden” area,
i.e., the volume that is expected to stay empty for the
component to work correctly. The idea is to explicity
model the space which a system expects to be free of
external impact to actually deliver the promised ser-
vice.

Intuitively a spatio-temporal component receives data in-
put and reads information via its detectors (A(D)). As a
response it outputs data, changes the positions of its detec-
tors and rigid parts, modifies the transformations caused by
its movers, and adjusts its notion about a region in space
which is expected to be kept free of external objects for the
component to work correctly. As we are interested in the
behavior of the system over a possibly infinite time, all in-
puts and outputs are not single elements but streams (or sets
of streams)3. These are interpreted under the assumption of
a discrete time, i.e., all stream elements are associated with

2B denotes the set of Boolean values.
3While there are usually infinitely many valid executions and a single

execution may take infinite time, we usually describe these systems by fi-
nite notations, such as mathematical functions or modified state machines.

a certain time slot. This assumption is valid if the time steps
are small enough, however more complicated timing mod-
els and their relationships are discussed in [1] and seem to
carry over to our model if needed. For the output the power
set is used to both model partiality (C(i, a) = ∅), as not
all inputs may lead to a valid configuration of the system,
and non-determinism (|C(i, a)| > 1) as a result of under-
specification or abstraction of physical phenomena.

Furthermore we require the component to be strongly
causal for valid inputs (i.e., those with non-empty out-
put sets). We adapt the definition from [3] to our case,
which means for inputs (i1, a1), (i2, a2) ∈ ~I × A(D) with
C(i1, a1) 6= ∅ and C(i2, a2) 6= ∅ and any t ∈ N we require

(i1, a1)↓ t = (i2, a2)↓ t ⇒
{y↓(t+1) | y∈C(i1, a1)} = {y↓(t+1) | y∈C(i2, a2)},

i.e., the outputs and positions at some time t + 1 may only
depend on previous inputs and detector activations (on or
before time t) but not on simultaneous or future input. This
is crucial to ensure the soundness of the composition of
components and can be interpreted as the minimal reaction
delay of a system.

The following sections describe operators which can be
used to construct spatio-temporal components from other
spatio-temporal components and thus support the decom-
position of a complex system into more manageable parts.

4.3. Parallel composition

The parallel composition of spatio-temporal components
corresponds to the case of putting both components next to
each other. So in terms of data exchange nothing interest-
ing happens, but the volumes of the parts may activate the
detectors of the other component. Additionally parts might
collide, leading to an invalid state (i.e., an empty set of out-
puts for certain inputs).

For j = 1, 2 let Cj be spatio-temporal components with
syntactic interface (Ij , Oj , Dj , Pj ,Mj) such that their in-
terfaces are pairwise disjunct, i.e., X1 ∩ X2 = ∅ where X
is just a substitute for I,O,D, P, M . Their parallel compo-
sition denoted by M1‖M2 has the syntactic interface

(I,O,D, P, M) =
(I1 ∪ I2, O1 ∪O2, D1 ∪D2, P1 ∪ P2,M1 ∪M2) .

For a specific input (i, a) ∈ I × A(D) and
(o, d, p, m, f) ∈ (C1‖C2)(i, a) the relationship to the in-
puts and outputs (oj , dj , pj ,mj , fj) ∈ Cj(ij , aj) is charac-
terized by the following equations.

∀j ∈ {1, 2} : i|Ij = ij , o|Oj =oj ,
d|Dj =dj , p|Pj =pj , m|Mj =mj

(1)

This defines that the input and output, the positions of
detectors and parts, and the mover transformations are just
evaluated individually by each of the parallel composed
components. As shown by the next equation, the forbidden
areas are also just combined.

∀t ∈ N : f.t = f1.t t f2.t (2)

Finally the detector activations can be triggered from
both the outside of the new component and mutually by
the two components, i.e., if a part from one component is
detected by (collides with) a detector from the other com-
ponent.

∀j, k ∈ {1, 2}, j 6=k ∀δ∈Dj ∀t∈N :
aj(δ).t =

(
a(δ).t ∨

∨
ρ∈Pk

pk(ρ).t ./ dj(δ).t
) (3)

The important point here is that is the components are
strongly causal. This ensures there always exists a unique
solution to the equation, as otherwise the component could
react to a collision by moving parts such that the collision
did not occur in the first place, leading to paradox situations.

In addition to the three equations given before, compo-
sition is only valid for an input if the components do not
interfere with each other in disallowed ways, i.e., collisions
between parts of the two components or penetration of the
forbidden volume.

∀t ∈ N ∀ρ1 ∈ P1, ρ2 ∈ P2 :
¬(p1(ρ1).t ./ p2(ρ2).t ∨

f1.t ./ p2(ρ2).t ∨ p1(ρ1).t ./ f2.t)
(4)

We still allow the forbidden areas to overlap, and parts of
a component are allowed to violate its own forbidden area
(e.g., p1.t ./ f1.t), as a component is responsible for what
may happen in its forbidden area. The contact just states,
that no external objects may be in this area, as a component
may rely on this.

Equipped with these equations we can precisely describe
the result of (C1‖C2)(i, a). Denote by R the results accord-
ing to equations 1 to 3:

R := {(o, d, p, m, f) ∈ ~O × ~D × ~P × ~M × V ∞ |
∃i1, a1, o1, d1, p1,m1, f1, i2, a2, o2, d2, p2,m2, f2 :
∀j ∈ {1, 2} : (oj , dj , pj ,mj , fj) ∈ Cj(ij , aj) ∧
equations 1 to 3 hold}

If for the construction of any element of R equa-
tion 4 was violated, then (C1‖C2)(i, a) = ∅, otherwise
(C1‖C2)(i, a) = R. The reason to exclude all outcomes
in case of a single possible invalidation is that we do not
have control over the composed components, i.e., it is pos-
sible to yield an invalid state, so the input may not be used
for the composed component.

From the equations it can be seen, that parallel composi-
tion is both a commutative and associative operation.

4.4. Constrained activation

It is good engineering practice to explicitly model all
effects which contribute to the correct behavior of a sys-
tem. However, in the parallel composition given previ-
ously all possible interactions in terms of detector activa-
tions are possible. To allow a more controlled composi-
tion, we introduce a constrained activation operation. Let
C be a spatio-temporal component with syntactic interface
(I,O,D, P, M) and�⊆ P × D a relation describing al-
lowed activations. We intend to only allow a detector δ to
be activated by a part ρ, if ρ� δ.

The constrained activation of C with respect to � is
denoted by cact(C,�) and has the same syntactic interface
as C. Its semantics are defined by

cact(C,�)(i, a) := ∅ if ∃(o, d, p, m, f) ∈ C(i, a) ∃ρ ∈ P, δ ∈ D
∃t ∈ N : p(ρ).t ./ d(δ).t ∧ ¬(ρ� δ)

C(i, a) otherwise

Usually constrained activation will be used in conjunc-
tion with parallel composition, so for spatio-temporal com-
ponents Cj with syntactic interfaces (Ij , Oj , Dj , Pj ,Mj)
(j ∈ {1, 2}) and�⊆ (P1 ∪ P2) × (D1 ∪ D2) we use the
abbreviation C1‖�C2 instead of cact(C1‖C2,�).

4.5. Data feedback

With only parallel composition the components could
only interact physically (i.e., by collisions between parts
and detectors). To support communication using the data
input and output ports, we introduce a feedback operation.
Let C be a spatio-temporal component with syntactic in-
terface (I, O, D, P, M) and q : I → O a partial map-
ping from input to output ports4 which is type correct, i.e.,
∀ι ∈ dom(q) : typeI(ι) = typeO(q(ι)). Then the feedback
on C according to q is denoted by fb(C, q), has syntactic
interface (I ′, O,D, P, M) with I ′ := I \ dom(q), and is
semantically defined by

fb(C, q)(i′, a) := {(o, d, p, m, f) | ∃i ∈ I :
i|I′ = i′ ∧ (o, d, p, m, f) ∈ C(i, a) ∧
∀ι ∈ dom(q) : i(ι) = o(q(ι))} .

Due to the strong causality we required for spatio-
temporal components, this operation is well defined and the
function defined by a component after feedback can be eas-
ily constructed by induction on time.

4By dom(f) we denote the domain of a partial function f , i.e., the set
of input values for which f is defined.

Feedback is usually used in conjunction with parallel
composition to connect multiple components with each
other.

4.6. Hiding

Hiding or encapsulation is an engineering practice used
to mask irrelevant details, which can be used both to ease
understanding of a component and avoid the users of a com-
ponent to rely on implementation details which might be
subject to change. For a spatio-temporal component C with
interface (I,O,D, P, M) we can hide outputs or movers by
simply erasing them from the interface, thus making them
inaccessible. If we want to hide detectors, we have to ensure
that when using the component no external objects interfere
with those detectors. This can be achieved by extending the
forbidden area of the component by the volumes of the hid-
den sensors. Parts can not be hidden, but their appearance
can be made more coarse by treating multiple parts as one
larger part. Inputs can not be hidden, because a value has to
be assigned to them. However the feedback operation from
the previous section removes input ports from the interface,
so parallel composition with a component without inputs
followed by feedback can be used to hide input ports.

By HO ⊆ O, HD ⊆ D, and HM ⊆ M we denote the
sets of outputs, detectors, and movers we intend to hide.
Additionally let P1, . . . , Pn be a proper partition of P , i.e.,
Pj 6= ∅, Pj ∩ Pk = ∅ for j 6= k and

⋃n
j=1 Pj = P . Then

we denote C after the application of hiding using these sets
by hide(C,HO,HD, {P1, . . . , Pn},HM). Its syntactic in-
terface is (I, O\HO, D\HD, {P1, . . . , Pn},M \HM) and
its semantics are given by

hide(C,HO,HD, {P1, . . . , Pn},HM)(i, a) =
{(o|O\HO

, d|D\HD
, p′,m|M\HM

, f ′) |
∃a′ ∃(o, d, p, m, f) ∈ C(i, a′) ∀t ∈ Nat :
f ′.t = f.t t

⊔
δ∈HD

d(δ).t ∧
a′|D\HD

= a ∧ a′|HD
.t = false ∧

∀j ∈ {1, . . . , n} : p′(Pj).t =
⊔

δ∈Pj
p(δ).t} .

4.7. Positioning

An operation that seems quite obvious when dealing with
components in space is a positioning operation, which is
used to move a component to its proper place. For this
let C be a mechatronic component with syntactic interface
(I,O,D, P, M) and T ∈ T ∞ a stream of transformations.
Then pos(C, T) denotes C positioned by T . The positioned
component has the same syntactic interface as C and

pos(C, T)(i, a) = {(o, T (d), T (p),m′, T (f)) |
∃(o, d, p, m, f) ∈ M(i, c) ∀t ∈ N : m′.t = T.t ◦m.t}

where T is interpreted point-wise on V ∞ and ~D resp. ~P .

4.8. Connecting movers

Finally we want to express that a component is con-
nected to another one (like for example a robotic gripper
is connected to a robotic arm) via some mover and thus has
to follow every movement.

For j = 1, 2 let Cj be spatio-temporal components with
syntactic interface (Ij , Oj , Dj , Pj ,Mj) and µ ∈ M1 a
mover. Then the connection of M2 to M1 via the mover
µ (written as M1

µ
◦−M2) is defined as

M1

µ
◦−M2 := M1 ‖ pos(M2, πµ(M1)) ,

where πµ is the projection to the corresponding transforma-
tion of µ.

As a connection by a mover results in a single compo-
nent, no cyclic connections can occur. Thus the connections
by movers form a forest in the components, which corre-
sponds to serial kinematics.

4.9. Implications

The model presented so far has some interesting proper-
ties, which are summarized in this section. The first one is,
that all operations either only affect the spatial parts (paral-
lel composition, mover connection) or the communication
ports (feedback). Thus the interplay between logic data and
spatial effects (motion and collisions) has to happen in the
atomic components. An example for this is given in the next
section, where a sensor is modeled as a component which
converts detector activations to data sent on the output port.

The other property is that contrary to other formalisms
the partiality of the specification (the semantic interface
function) is not used to express under-specification, but
rather to express invalid input. Different from pure soft-
ware systems such invalid input could lead to output that is
not only undefined but might describe an invalid spatial con-
figuration that might be impossible or hazardous for the real
system. While for components it can be part of their con-
tract to not work for every possible input, the entire system
usually is expected to have a defined (valid) behavior for
any input, as the environment is out of control of the system
and thus any input has to be dealt with in a non-destructive
way. This totalization is usually performed by reducing the
possible inputs, which can be achieved by hiding detectors
or filtering inputs using an additional component.

5. Example

The presented formalism is not intended to be used to
actually model systems, but rather as a means for reasoning
about them. The modeling should be performed using some
technique which is based on the semantics presented here.

Nonetheless, we give an exemplary description of a system
in this formalism to show how the presented concepts are
applied. For all examples we assume the three-dimensional
Euclidean space given as an example in Sec. 3.

5.1. Industrial robot

Our first example is a simplified industrial robot, which
is shown in Fig. 1. It consists of three parts: a base which
can be rotated, the arm, which can be extended, and the
gripper.

We model the base by a component Cbase with syntac-
tic interface ({ibase}, {obase}, ∅, {pbase}, {mbase}). Via the
input port, commands for rotation of the base are sent,
while on the output port it reports its current orientation
in degree, thus car(type(ibase)) = {left, right, halt} and
car(type(obase)) = Z. The base behaves deterministi-
cally and is defined by Cbase(i) = {(o, p, m, f)}, where
o, p, m, f are constrained by (t ∈ N)

o.0 = 0 ,

o.(t+1) =

 max{(o.t)− 1,−90} if i.t = left
min{(o.t) + 1, 90} if i.t = right
o.t otherwise

,

p = p∞0 , where p0 is the volume corresponding to the base,

m.t = “rotation by o.t degree”,

f = 0∞V .

So the base may rotate between −90 and 90 degree, but its
shape is always the same.

The arm is described by the component Carm with syn-
tactic interface ({iarm}, {oarm}, ∅, {parm}, {marm}). Via the
input port, commands for extending the arm are sent, while
on the output port it reports its current length in cen-
timeters, thus car(type(iarm)) = {extend, retract, halt} and
car(type(oarm)) = N. The arm behaves deterministically
and is defined by Carm(i) = {(o, p, m, f)}, where o, p, m, f
are constrained by (t ∈ N)

o.0 = 50 ,

o.(t+1) =

 min{(o.t) + 1, 100} if i.t = extends
max{(o.t)− 1, 50} if i.t = retract
o.t otherwise

,

p.t is the corresponding volume with the arm extended to
a length of o.t centimeters,

m.t = “translation by o.t− 50 centimeters”,

f = 0∞V .

The arm may be extended from 50 to 100 centimeters. Note
that we do not model how this is achieved technically, but

only how this affects the shape of the arm and the translation
it applies to connected components.

The component Cgripper for the gripper is not given here,
as it is similar to those given before. The entire robot can
be expressed as

Crobot = (Cbase
mbase
◦− Carm)

marm
◦− Cgripper .

5.2. Interacting robots

As a second example we model two robots which inter-
act in unloading a container which can be placed between
them. A sketch is shown in Fig. 2 which also depicts the
sensor which is needed to detect the presence of a con-
tainer. For this we use two components Crobot1 and Crobot2,
which are the same as the robot given in the previous ex-
ample, but with the numbers 1 and 2 attached to all asso-
ciated names5. Additionally we need a component Csensor
with syntactic interface (∅, {osensor}, {dsensor}, ∅, ∅) charac-
terized by Csensor(a) = {(o, d},where car(type(osensor)) =
B, o.0 = false, o.(t+1) = a.t, and d is the stream giv-
ing the position of the sensor as shown in the figure. So
the sensor is just used for converting spatial collision acti-
vations to logical data signals. The electro-mechanical part
of the system is thus captured by

Cunload = Csensor ‖� (Crobot1 ‖ pos(Crobot2, T
∞
robot2)) ,

where Trobot2 describes the transformation used to place the
second robot to its intended position and � is the empty
relation as we do not want the robots to activate the sensor.

Currently all inputs and outputs are externally accessible,
allowing the robots to be moved around. In this setup how-
ever, there obviously is the possibility of the robots’ arms
to collide causing damage. For example for any input with
iarm1 = iarm2 = extend∞ the result would be the empty
set indicating an invalid state. One possible solution is the
inclusion of a controller component Cctl, which takes high-
level commands and applies them to the robots, but at the

5Formally this could be captured by a renaming operation, however this
kind of reuse should be handled by a modeling environment and thus we
do not deal with it here.

Figure 2. Sketch of the setup with two robots
as seen from the top.

Figure 1. Several views of the robot: draft, 3d view, exploded view.

Figure 3. Component diagram for the two
robots.

same time tries to avoid collisions between them. It has the
syntactic interface

({icmd, isensor, ir1b, ir2b, ir1a, ir2a},
{ostatus, or1b, or2b, or1a, or2a}, ∅, ∅, ∅) .

We define the partial connection relation q by the pairs

{(ir1b, obase1), (ir1a, oarm1), . . . , (ibase2, or2b),
(iarm2, or2a), (isensor, osensor)} .

A semantic interface for Cctl is not provided here, but obvi-
ously the goal should be to define it in a way that the entire
system Csystem = fb(Cctl‖Cunload, q) specifies a total func-
tion, i.e., there is no input leading to an invalid state (indi-
cated by missing output).

As a summary the component compositions are graph-
ically depicted in Fig. 3, which nicely shows the hierar-
chical decomposition of the complex system to manageable
components. The input and output ports of components are

drawn as white and black little squares and the arrows indi-
cate the data flow through the system. For the diagram we
also added ports/channels for the grippers, which were not
discussed before.

6. Properties of spatio-temporal systems

In this section we discuss properties for instances of our
spatio-temporal model. We only give a logic characteriza-
tion of the properties here. Checking for these properties
is beyond the scope of this paper and can probably only
be solved for a reduced set of components and systems, as
most of the required checks are undecidable in general.

6.1. Spatial compatibility

Two spatio-temporal components C1, C2 with syntactic
interface (Ij , Oj , Dj , Pj ,Mj) (j = 1, 2) are called spatially
compatible, if for all i ∈

−−−−→
I1 ∪ I2 and a ∈ A(D1 ∪D2):

C1(i|I1 , a|D1) 6= ∅ ∧ C2(i|I2 , a|D2) 6= ∅ ⇒
(C1‖C2)(i, a) 6= ∅ .

This encodes that the combined components may not run
into an invalid state for inputs which would not cause prob-
lems with both components in isolation.

A sufficient condition for spatial compatibility is spatial
separation, which intuitively captures that two components
are far enough from each other to not affect each other. For
a component C we call B ∈ V a (not necessarily unique)
bounding volume, if

∀i ∈ ~I, a ∈ A(D) ∀(o, d, p, m, f) ∈ C(i, a) ∀t ∈ N :
∀δ ∈ D : d(δ).t v B ∧
∀ρ ∈ P : p(ρ).t v B ∧
f.t v B .

We call C1 and C2 spatially separated, if there are bounding
volumes B1 for C1 and B2 for C2 such that ¬(B1 ./ B2).

6.2. Refinement

The idea of refinement is to gradually enrich a model
with more details, thereby ensuring (proving) that each re-
fined model does not violate the guarantees provided by the
coarser model. The goal usually is to perform refinement far
enough to result in an implementation of the system, which
is then correct by construction.

Depending on the kind of details added, different no-
tions of refinement can be derived. We will concentrate on
behavioral refinement here, which basically reduces non-
determinism. Let C1 and C2 be two spatio-temporal com-
ponents with the same syntactic interface (I,O,D, P, M).
We call C2 a refinement of C1 (denoted by C1 C2), if
for all (i, a) ∈ ~I ×A(D)

C1(i, a) 6= ∅ ⇒ C2(i, a) ⊆ C1(i, a) .

So whenever an input is invalid for C1, we do not care about
the results of C2; otherwise C2 may not behave in a way that
was not already possible for C1.

Given the definitions in Sec. 4, behavioral refinement
has some nice properties, namely that for all components
C1, C2, C3 and “matching” q and T the following state-
ments hold:

C1 C2 ⇒ C1‖C3 C2‖C3

C1 C2 ⇒ fb(C1, q) fb(C2, q)
C1 C2 ⇒ pos(C1, T) pos(C2, T)

Similar rules are also valid for hiding, constrained activa-
tion, and mover connection. This allows us to perform re-
finement on the individual atomic components and as a re-
sult get a refinement of the overall system.

7. Future work

Future work can be roughly divided into three areas. The
first one is the extension of the semantic model to also cap-
ture the generation and transformation of passive objects.
Those passive objects do not themselves posses a behav-
ior, but rather are affected by the individual components of
a system, which may pass these objects to each other and
change their location in space. Such an extension could
be used for modeling material transportation and manipu-
lation, which is one of the core tasks of systems in the in-
dustrial automation domain.

The second area of further research is the description
of practically usable modeling techniques based on this se-
mantic model. This includes suitable techniques for repre-
senting atomic components (like some variant of automata)
as well as an intuitive (possibly graphical) syntax for the
composition of components. A first step in this direction has
been made in [14], but the link to the model presented here

Figure 4. Screen shot of the prototypical
modeling tool AF/STEM.

still has to be made. Along this line we also look into build-
ing suitable tool support for the creation of those models,
as modeling systems of realistic size is not feasible without
them, and automatic analysis techniques can hardly be ap-
plied to models written on paper. First results are available
as part of AF/STEM6 (Fig. 4), which is a branch of Auto-
FOCUS [2, 18], a prototypical tool adaption of the FOCUS
theory.

Finally, the various uses of such a spatio-temporal sys-
tem model should be subject to further research. This
includes advanced analysis and verification techniques to
prove these systems correct with respect to some specifi-
cation, which in turn raises the question of suitable for-
malisms for the specification of such systems. Another ap-
plication currently investigated in the context of the Au-
toVIBN project is the generation of (partial) development
artifacts, such as coarse CAD models, source code, or sim-
ulation models used for testing. This assumes that the cre-
ation of a suitable system model happens early in the devel-
opment process.

8. Conclusion

In this paper we presented a semantically founded model
for the description of computer-based spatio-temporal sys-
tems. The model is based on a decomposition into hierar-
chical components, and the description of component be-
havior by a relation on streams which represent the data in-
puts and outputs, activations, shapes, and positions of the
component over time. The expressiveness of the model was
demonstrated by two examples and we showed how several

6Details at http://af3.in.tum.de/index.php/STEM.

properties of systems can be formalized in this framework.
We perceive this as a solid foundation for further research
in the area of modeling and analyzing spatio-temporal and
mechatronic systems.

References

[1] M. Broy. Refinement of time. Theoretical Computer Sci-
ence, 253(1):3–26, 2001.

[2] M. Broy, F. Huber, and B. Schätz. AutoFocus – Ein
Werkzeugprototyp zur Entwicklung eingebetteter Systeme.
Informatik Forschung und Entwicklung, 13(13):121–134,
1999.

[3] M. Broy, I. Krüger, and M. Meisinger. A formal model
of services. ACM Transactions on Software Engineering
Methodology, 16(1), 2007.

[4] M. Broy and K. Stølen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces, and Re-
finement. Springer, 2001.

[5] P. J. L. Cuijpers and M. A. Reniers. Hybrid process algebra.
Journal of Logic and Algebraic Programming, 62(2):191–
245, 2005.

[6] B. A. El-Geresy. The space algebra: Spatial reasoning with-
out composition tables. In ICTAI’97: Proceedings of the
9th International Conference on Tools with Artificial Intelli-
gence, pages 67–74, 1997.

[7] V. Engelson. Tools for Design, Interactive Simulation, and
Visualization of Object-Oriented Models in Scientific Com-
puting. PhD thesis, Linköpings Universitet, 2000.

[8] D. Gabelaia, R. Kontchakov, Á. Kurucz, F. Wolter, and
M. Zakharyaschev. Combining spatial and temporal logics:
Expressiveness vs. complexity. Journal of Artificial Intelli-
gence Research, 23:167–243, 2005.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, 1991.

[10] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
1987.

[11] T. Henzinger. The theory of hybrid automata. In Verification
of Digital and Hybrid Systems, NATO ASI Series F: Com-
puter and Systems Sciences 170, pages 265–292. Springer,
2000.

[12] C. M. Hoffmann. Geometric and solid modeling. Morgan
Kaufmann, 1993.

[13] J. Huang, J. Voeten, M. A. Groothuis, J. F. Broenink, and
H. Corporaal. A model-driven design approach for mecha-
tronic systems. In ACSD’07: Proceedings of the 7th Interna-
tional Conference on Application of Concurrency to System
Design, pages 127–136. IEEE, 2007.

[14] B. Hummel and P. Braun. Towards an integrated system
model for testing and verification of automation machines.
In MiSE ’08: Proceedings of the 2008 international work-
shop on Models in Software Engineering, pages 51–56.
ACM, 2008.

[15] O. Kutz, F. Wolter, H. Sturm, N.-Y. Suzuki, and M. Za-
kharyaschev. Logics of metric spaces. ACM Transactions
on Computational Logic, 4(2):260–294, 2003.

[16] N. Lynch, R. Segala, and F. Vaandraager. Hybrid I/O au-
tomata. Information and Computation, 185(1):105–157,
2003.

[17] Object Management Group. OMG SysML specification v.
1.0, May 2006.

[18] B. Schätz, A. Pretschner, F. Huber, and J. Philipps. Model-
based development of embedded systems. In OOIS Work-
shops, pages 298–312, 2002.

[19] P. Struss, A. Kather, D. Schneider, and T. Voigt. A compo-
sitional mathematical model of machines transporting rigid
objects. In ECAI’08: Proceedings of the 18th European
Conference on Artificial Intelligence, 2008.

[20] M. Tiller. Introduction to Physical Modeling with Modelica.
Springer, 2001.

