
Towards A Repository of Common Programming Technologies Knowledge

Daniel Ratiu1 and Martin Feilkas1 and Florian Deissenboeck1 and Jan Juerjens2 and Radu Marinescu3

1 Technische Universität München, {ratiu,feilkas,deissenb}@in.tum.de
2 The Open University, http://www.jurjens.de/jan

3 Politehnica University Timisoara, radum@cs.upt.ro

Abstract

The everyday programming and maintenance activities
make use of knowledge about programming-related tech-
nologies such as graphical interfaces (GUIs) or XML. Hav-
ing this knowledge in a machine processable form supports
the automation of typical maintenance activities such as
concept location and raise the abstraction level at which
the current code analyses are performed. In this paper we
promote our current project of building a repository of on-
tologies1 that contain knowledge about programming tech-
nologies. We propose a method for extracting these on-
tologies by analyzing the commonalities of different APIs
that address the same domain. We discuss the motivation
for such a repository in form of possible usage directions
and present our experience with building and using ontolo-
gies that share technical knowledge about GUIs and XML.
Based on our experience we discuss the challenges of build-
ing and evolving the repository and discuss how can the se-
mantic web technologies contribute to this endeavor.

1 Introduction
Software maintenance is a knowledge intensive activity.

Evolving, maintaining and understanding programs require
that programmers possess knowledge about their applica-
tion domain (e.g. banking), programming technologies (e.g.
graphical widgets) and the relation between the domain
concepts and the technologies used to implement them (e.g.
adding a new bank client is done in the ’NewClient’ dialog)
[2, 1, 5, 17]. The current state of the art automatic reverse
engineering analyses do not make use of such knowledge
and for example make no difference between analyzing a
program sub-system that models the core of the application
domain (e.g. banking) and another sub-system that repre-
sents the persistency layer of the application. The reason
for this is that no knowledge base is available that is suit-
able for automatic code analysis (i.e. contains concepts at
the abstraction level of programs and in a machine process-

1www4.in.tum.de/˜ratiu/knowledge_repository.html

able form). In this paper we promote our project of build-
ing a repository of (light-weighted) ontologies that contain
technical knowledge about programming technologies. Our
repository contains common sense, basic knowledge that is
well known to any programmer and that is at a rather su-
perficial level of formalization. For example, in the case
of technologies related to graphical widgets (GUIs), such
knowledge is that buttons are graphical components, have
labels, layout information, can be displayed, can contain
other graphical components, can update their views, or that
there are other kinds of input-components such as check-
boxes and radio buttons. In Figure 1 we present an example
about a fragment of a light-weighted ontology that contains
concepts about the GUI domain. The concepts and relations
between them are in form of triples subject – verb – object.

Button isA Component
Button isA Container
Button hasProperty Alignment
Button hasProperty Background
Button hasProperty Enabled

Button hasProperty Text
Button hasProperty Prefered Size
Button hasProperty Min Size
Button hasProperty Style
Button hasProperty Label

CheckBox isA Button
RadioButton isA Button
ToggleButton isA Button
Show actsOn Button
Button isDoer Update

Figure 1. Common knowledge about GUIs
In [14] we present an approach for (semi-)automatically

extracting ontologies by analyzing the commonalities of the
APIs that address the same domain. Using this approach
makes it feasible to extract ontologies that offer a good do-
main coverage and that can be used to build the program-
ming technologies repository. Once the first version of such
an ontology is extracted, it needs to be validated, completed
and evolved. Even if this requires a lot of effort, especially
for domains that contain hundreds of concepts (e.g. graphi-
cal widgets), once such an ontology is available, it contains
shared knowledge in a machine processable form that can
be used “off-the-shelf” in other analyses. Our endeavor is
driven by the belief that once a repository of programming
technologies ontologies is available it will be of interest for
a large program analysis community and will enhance the
automation of many software engineering activities.

Outline. In Section 2 we present a set of possible appli-
cations of the ontologies repository. In Section 3 we briefly
introduce our view over ontologies as means for describing

1

and sharing domain knowledge. In Section 4 we present a
method for extracting ontologies about programming tech-
nologies by analyzing multiple APIs that address the same
domain. In Section 5 we present our experience with build-
ing and using two ontologies (one about GUI and the other
about XML) for tackling some of the scenarios presented in
Section 2. In Section 6 we discuss several open problems
and how can semantic web technologies contribute to our
project. In Section 7 we present the related work and after
this we conclude the paper.

2 Knowledge Repository Usage Scenarios
Even if building a repository of ontologies that address

technical domains is challenging, we strongly believe that
building it is not an end purpose. We envision that once
such a repository is available, it will improve the current
reverse engineering practice in a number of directions as
listed below. Until now we have different levels of expe-
rience with these directions. The list below is ordered ac-
cording to our experience: the top-most items (1 - 3) are
the mostly inspected by us and the bottom-most items (4 -
6) are only speculations based on our general programming
experience.

1. Concept location. Concept assignment and concept
location are among the most important activities in every-
day software maintenance tasks [4, 12]. In our previous
work [15] we developed a technique for (semi-)automatic
location of domain concepts in the code by mapping pro-
grams with domain ontologies. Once the mappings are ex-
plicitly realized, they can be subsequently used by other de-
velopers. This is especially useful for developers that are
new to a project. Furthermore, the explicit links between a
program and an ontology (seen as semantic domain) define
a conceptual based meaning of the program. In turn this en-
ables different parts of a program to be seen from the point
of view of the concepts that they implement. This change
of perspective enables a new set of automatic program anal-
yses (e.g. conceptual analysis of identifiers names, logical
duplication) and enriches the already existing ones (see 3.).

2. Assessing the quality of APIs. By mapping a do-
main ontology to existing APIs we analyze the measure and
manner in which the APIs reflect the domain. Thereby, we
can identify situations in which an API implements domain
concepts in a way that does not match to the domain knowl-
edge [15, 13]. Furthermore, situations in which domain
concepts are not implemented in APIs can be identified and
thereby we assess the (conceptual) coverage of APIs with
respect to their domain. Depending on how the domain con-
cepts are implemented by an API, the API can or cannot be
extended towards implementing new domain concepts.

3. Enriching program analysis. Many of the current
wide-spreaded static analyses (e.g. clone detection, design
quality assessment) are at a pure syntactical level. However,

the proper interpretation of their results requires semantical
information about the relation of the program to the real-
world knowledge. For example, if a class is reported as af-
fected by a design flaw, the relevance/criticality of the flaw
could be weighted by the conceptual centrality of that class.
Similarly, domain knowledge might lead to a better detec-
tion of architectural violations (e.g. if UI concepts appear
in what is supposed to be the persistency layer of an appli-
cation). Furthermore, domain knowledge can drive (or at
least assist) the process of a system’s restructuring, by help-
ing decide how the intelligence of a system fragment can be
redistributed so that the conceptual integrity of the system
gets improved.

4. Indexing and documenting reusable components.
Having an ontology that covers a technical domain can en-
able an advanced search for components (e.g. domain spe-
cific libraries) that cover the domain. For example, the pro-
grammers can choose a set of relevant concepts from a do-
main and query which component provides these concepts
– e.g., according to the coverage of the AWT (presented
in Section 5), a programmer that needs to use tree widgets
should choose SWING and not AWT. Once the mapping be-
tween a domain ontology and an API is realized, it can be
used as a documentation of the API.

5. Teaching and technology transfer. A domain on-
tology can offer a good starting point for teaching and dis-
seminating programming technologies. Furthermore, it can
serve as basis for defining a common vocabulary within a
project. Such an ontology could answer the questions like
for example: What are the central concepts of a library and
how are they related? The central concepts of a technology
should be taught before concepts that are only at the mar-
gin of the domain. A common ontology of technological
knowledge enables a comparison of the design choices that
were made in reflecting the concepts by different APIs. This
can lead to a catalog of best practices in designing APIs.

6. IDE support for programming. Enriching the
current IDEs with programming technologies knowledge
opens new possibilities also in the forward engineer-
ing. A semantically enhanced IDE can “look over the
shoulder” of the programmers and can help in differ-
ent programming tasks. For example, by knowing the
real-world meaning of two variables the IDE might give
warnings when one is assigned to the other in the case
when the concepts that they represent are not compati-
ble. We regard this as a kind of conceptual type checking.

We are convinced that the possible applications of the on-
tologies repository are not limited to the ones enumerated
above. The success of the repository will be measured in
the number of users and usages of its ontologies.

2

3 Knowledge sharing through ontologies

To support sharing and reusing the knowledge of a par-
ticular domain one needs to explicitly represent it in a for-
mal manner. The first step in formally representing a body
of knowledge is to decide on a conceptualization of the do-
main. A conceptualization is an abstract, simplified view of
an area which is to be described for a specified purpose.
It contains the set of objects and concepts together with
their properties and interrelationships [8]. An ontology is
defined to be an explicit specification of a shared conceptu-
alization [9] and is used for sharing the knowledge about a
domain by making the concepts and relations within it ex-
plicit. The term “shared” means that an ontology represents
an agreed body of knowledge and the term “specification”
implies that this conceptualization is defined in a rigorous
manner.

Formalization level. There is a wide spectrum through
which ontologies can be seen from the point of view of
specification detail [11]. At the lowest level of detail are
controlled vocabularies which are nothing else than lists of
terms. The next level of specification are glossaries which
are expressed as lists of terms with associated meanings
presented as glossary entries in natural language. Thesauri
provide additional relations between their terms (e.g., syn-
onymy) without assuming any explicit hierarchy between
them. Many scientists prefer to have some hierarchy in-
cluded before a specification can be considered an ontology.
The most important hierarchical relation in ontologies is the
“is-a” relation. At the next stage are strict subclass hierar-
chies which allow the exploitation of inheritance (i.e., the
transitive application of the “is-a” relation). More expres-
sive specifications include classes attributed with properties
which, when specified at a general level, can be inherited
by the subclasses. A more detailed specification level im-
plies value restrictions for properties; the most expressive
ontologies allow the specification of arbitrary logical con-
straints between their members. Even if at the end of the
ontology specificness spectrum are fully axiomatized on-
tologies, most of the existent ontologies today are weakly
specified.

In our work we use an informal meaning of the term “on-
tology” - which we regard to comprise only concepts ar-
ranged in a taxonomy and relations between them (see Fig-
ure 3). We do not require any consistency checks, restric-
tions on properties or logical inference to be defined or that
the ontology terms obey to inference rules. This is however,
the most common way in which ontologies are currently
used in practice. In order to represent an ontology we use
a graph language similar to the RDF(S) graphs [10]. Enti-
ties within the ontology are the nodes of the graph. Each
relation between two nodes of the graph represent a relation

between the entities in the ontology.

Obtaining ontologies. To the best of our knowledge,
there are no off-the-self ontologies that comprise the knowl-
edge about the programming technologies at the abstraction
level of the program code and can be used in code analyses
today.

In [13] we proposed a method for manually building
ontologies that are suitable for analyzing APIs. However,
many times such ontologies comprise a large number of
concepts and therefore they are difficult to build and vali-
date manually. In [14] we propose a method for extracting
domain ontologies through the analysis of commonalities of
several domain specific APIs that address the same domain
(we will briefly present this method in the next section).
This method has the following advantages:

Efficiency: Extracting the domain knowledge from APIs
and after this (manually) validating the results is much more
efficient than building the ontology by hand.

Completeness: Even if the programmers used different
tools and even programming languages, there is a constant
in their work: the domain which is to be represented. The
different programmers model the same domain from differ-
ent perspectives and when the number of analyzed APIs is
big enough then we can achieve a comprehensive coverage
of the domain.

Acceptance: By analyzing the APIs as they are imple-
mented, we obtain ontologies that are very close and at an
appropriate abstraction level to the common knowledge that
the programmers have about a domain. Since the APIs that
we analyze are widely used, this knowledge is accepted by
a large community.

4 Extracting Ontologies from APIs

One of the biggest sources of technical knowledge that
is represented in a structured form are the public interfaces
of domain specific libraries. Every programming language
has an implementation of the core technical concepts in its
standard libraries. However, a single API contains only one
view on its domain and this is usually not sufficient to gain a
complete model of the domain. Furthermore, APIs contain
a significant amount of bias and noise in form of imple-
mentation details that are mixed with representations of the
domain knowledge in their interfaces. In order to overcome
these problems, we developed a technique for extracting the
domain knowledge based on the similarities of several APIs
that cover the same domain [14].

In Figure 2 (left) we illustrate this situation intuitively.
The upper part of this figure represents the forward engi-
neering process of building the APIs: starting from the same
domain knowledge, different programmers provide differ-
ent implementations of domain concepts. The lower part

3

c

b d

a

f

ge

a'

xb'

c' a''

yb''

Programmer 1 Programmer 2

API 1 API 2

c''

c

b

a

a'

xb'

c' a''

yb''

c''

Representing the domain knowledge in APIs

Extracting the domain knowledge from APIs

API 1 API 2

package java.awt;
class Component extends Object {
 int getSize() { ... }
 int getLocation() { ... }
}
class Button extends Component { ... }
class Label extends Component { ... }

package org.eclipse.swt.widgets;
class Widget extends Object{ ... }
class Control extends Widget {
 Point getSize() { ... }
 Point getLocation() { ... }
}
class Button extends Control { ... }
class Label extends Control { ... }

namespace WIndows.Forms;
class Control : Component {
 public Point Location { get; set; }
 public Size Size { get; set; }
}
class Lael : Control { ... }
class ButtonBase : Control { ... }
class Button : ButtonBase { ... }

Control, Component

Button Label

Position Size
hasProp hasProp

isA

Figure 2. Domain knowledge reflected in APIs

presents the approach taken in this paper to extract the do-
main knowledge: the commonalities of more APIs are cap-
tured into a domain ontology.

Since there is a big abstraction gap between the mod-
eled domain and the programming languages, the concepts
and relations of the domain can be reflected in the code in
a multitude of ways and from a multitude of perspectives.
In the upper part of Figure 2 (right) we present examples
of common concepts from the graphical user interfaces and
the relations among them (e.g. buttons are graphical com-
ponents, graphical components have position and size). In
the lower part we present how this knowledge is reflected in
three of the most well-known GUI APIs (Java AWT, Eclipse
SWT and .NET).

The challenge of extracting the domain knowledge au-
tomatically is threefold: Firstly, we need to identify a way
to uniformize the possibly different implementations of the
same real-world situation (Section 4.1); secondly, we need
to identify a proper abstract representation of APIs that fa-
cilitates their comparison (Section 4.2) and thirdly, we need
to filter out the noise introduced by particular implementa-
tion details (Section 4.4).

4.1 Reflecting abstract relations in APIs

We regard an ontology to comprise concepts and the fol-
lowing relations between them: isA between the superor-
dinate and its subordinates (e.g. Component – isA – Win-
dow); hasProperty between an entity and its properties (e.g.
Window – hasProperty – Size); isDoer between an object
and the action that it performs (e.g. Window – isDoer –
paint) and actsOn between an action and the entities on
which it is performed (e.g. Resize – actsOn – Window).
An example of a fragment of such an ontology is presented
in Figure 3.

In order to identify the similarities between the APIs and

Window Title

isA

Dialog

hasPropertyRefresh isDoer

actsOn

Close

Figure 3. Example of an ontology fragment

public class Window { ... }
public class Dialog extends Window {...}

public class Window { ... }
public class SpecialWindows {
 public Window aDialog; ... }a)

public class Window {
 public String title; ...
}

public class Window {
 public String getTitle() { ... } ...
}b)

public class Window {
 public void refresh() { ... } ...
} c)

public class Graphics {
 public void draw(Shape aShape) { ... } ...
} d)

isA  {hasSupCls, hasType}
hasProperty  {hasAttribute, hasAccessor}

e)

isDoer  {hasMethod}
actsOn  {hasParameter}

Figure 4. From abstract relations to APIs

thereby to extract the ontology, we need to investigate typ-
ical ways of how the ontological relations that we aim to
recover are reflected at the APIs level.

Reflecting the “isA” relation in APIs. The isA relation
between an entity and its superordinate is reflected usually
at the API level through type-system generated relations: ei-
ther through the sub-classing relation or through a relation
between a variable and its type. In Figure 4a are several
examples that reflect how the “Dialog – isA – Window” re-
lation from an imaginary ontology about graphical widgets
can be implemented in the code.

Reflecting the “hasProperty” relation in APIs. The

4

hasProperty relation between an entity and its properties is
reflected usually at the API level through the attributes of a
class or through accessor methods. In Figure 4b we exem-
plify how the “Window – hasProperty – Title” is reflected
in an API.

Reflecting the “isDoer” relation in APIs. The isDoer
relation between an entity and the action it performs is re-
flected in APIs through a relation between a class repre-
senting the entity and a method representing the action. In
Figure 4c we exemplify how is the “Window – isDoer – Re-
fresh” represented in an API.

Reflecting the “actsOn” relation in APIs. The actsOn
relation between an action and the affected entity is re-
flected in APIs through a relation between a method rep-
resenting the action and its parameters representing the en-
tity. In Figure 4d we exemplify the implementation of the
relation ”Draw – actsOn – Shape”.

The similarities between the ontology and program level
relations are presented in Figure 4e.

4.2 Formalizing APIs

We use a graph-based representation of the program ele-
ments from the public interface of the APIs and model ex-
plicitly the names of the program elements. The full for-
malization is presented in [13, 14].

Representing APIs as graphs. We describe an API
as a labeled directed graph. The nodes of the graph
are the program elements accessible to the users of the
API (P). Its edges are typed relations defined in the
program among these program elements. Given a pair
of nodes of the program graph (p1 and p2), we define
the function e(p1, p2) (edge) to return the type of the
edge between them or ε if there is no edge. The exact
set of relation types varies from paradigm to paradigm
and even from language to language inside the same
paradigm (e.g. Smalltalk has no public attributes). We
consider in this paper only the case of Java-like lan-
guages and thereby we use the following relation types:
hasSupCls, hasType, hasAcc, hasCtr, hasMeth, hasAtt
and hasPar. The semantic of the labels is defined as fol-
lows: hasSupCls represents the relation between a class
and its super classes; hasType is a relation between an
attribute and its type; hasAcc is a relation between a class
and its accessors; hasCtr is a relation between a class and
its constructors; hasMeth is a relation between a class
and its methods that are neither constructors nor accessors;
hasAtt is a relation between a class and its attributes;
hasPar is a relation between a method and its parameters.

Example: In the lower and upper parts of Figure 5
we present examples of two APIs: on the left side is the

source code, in the middle is their instantiation accord-
ing to our framework and on the right these APIs are rep-
resented as graphs. For example, the fact that the class
Widget has attribute size is represented through the re-
lation: e(Widget, size) = hasAtt. To denote the fact that
hasAtt is the relation between the nodes Widget and Size
we use the following notation: hasAtt(Widget) = size

Lexical information. In a similar manner to the com-
munication among humans, which is many times realized
through words that serve as carriers for the semantic in-
formation, we consider the program element names (iden-
tifiers) to carry the information about the domain. The li-
brary’s vocabulary (I) is represented by the set of program
element names that are accessible through the public inter-
face of the API. The lexical layer is centered around a set
of lexically normalized words (W) that are obtained by the
reunion of the words of identifiers. We consider that words
carry the basic information and they represent the funda-
mental lexicalized concepts of the domain. The lexical layer
represents the “skin” of the library and is used to communi-
cate among the library developers and their users. The pro-
gram and the lexical layers are linked through the function
program-element-to-identifier (P2I) that maps the program
elements to their names. The function identifier-to-words
(I2W) is responsible for obtaining the set of normalized
words contained in the identifiers’ names. The splitting of
an identifier into words is done by using a set of heuristics
(e.g. CamelCase, special delimiters like underscore).

Example: In the middle part of Figure 5 we present
an example of the lexical layer corresponding to the two
APIs. It is centered around a set of words W that is
obtained through the splitting the identifiers from API1
(I1) and API2 (I2). Examples of the function identifiers-
to-words are: I2W (′getHeight′) = {′Get′,′Height′},
I2W (′drawAndMove′) = {′Draw′,′And′,′Move′},
I2W (′XMLNode′) = {′Xml′,′Node′}.

4.3 Extraction algorithm

In order to extract the ontology from the APIs we use
a graph matching algorithm. Our algorithm (presented in
[14]) matches nodes in the API graphs with similar names
and paths in the API graphs that correspond to the imple-
mentation of an abstract relation. Whenever a match is
found, we identify a “subject – verb – object” triple: the
subject and the object are the nodes and the relation among
them is the verb. In Figure 4e we present the similarities
between the ontology and program level relations.

Example: In Figure 5(right) the graph matching algo-
rithm matches the nodes “Widget” from both of the API
graphs and the nodes “getLocation” and “location”. Be-
tween these nodes are compatible relations, namely hasAcc

5

public class Widget {
 public Dimension size;
 public Point location;
 public Widget(Point loc, Dimension size) {...}
}
public class Window extends Widget {...}
public class Dialog extends Window {...}

AP
I 1

W={'Widget', 'Dialog', 'Menu', 'Get', 'Width', 'Height', 'Location', 'Point', 'Window', 'Dimension', 'Size'}
I1={'Widget', 'size', 'location', 'loc', 'Window', 'Dialog'}
P1={Widget, size, location, loc, size, Window, Dialog}

Le
xi
ca
l

hasSupCls(Window) = Widget hasAtt(Widget) = size

Widget

ha
sS
up
Cl
s

AP
I 2

hasAtt(Widget) = location

public class Widget {
 public int getWidth() { ... }
 public int getHeight() { ... }
 public Point getLocation() { ... }
}
public class Dialog extends Widget {...}
public class Menu extends Widget {...}

I2={'Widget', 'getWidth', 'getHeight', 'getLocation', 'Dialog', 'Menu'}

P2={Widget, getWidth, getHeight, getLocation, Dialog, Menu}

hasSupCls(Dialog) = Widget hasAcc(Widget) = getWidth
hasAcc(Widget) = getHeight

hasAcc(Widget) = getLocation

hasSupCls(Menu) = Widget

Menu Dialog

hasSupCls

hasSupCls(Dialog) = Window

getWidth getHeight

getLocation

hasAcc hasAcc

hasAcc

hasCtr(Widget) = Widget

Widget

ha
sS

up
Cl
s

WindowDialog
hasSupCls

size location

Widget

hasAtt hasAtt

hasCtr

hasP
ar

loc

size
hasPar(Widget) = loc

hasPar(Widget) = size

Figure 5. API Layers

and hasAtt that are used to represent in programs the
“hasProperty” abstract relation (see Figure 4e).

Widget

ha
sS

up
Cl
s

Menu Dialog

hasSupCls

getWidth getHeight

getLocation

hasAcc hasAcc

hasAcc

Widget

ha
sS

up
Cl
s

WindowDialog
hasSupCls

size location

Widget

hasAtt hasAtt

hasCtr
hasP

ar

loc

size

API1

API2

Figure 6. Identification of “Widget – hasProp-
erty – Location”

4.4 Extraction Methodology

Our algorithm is able to automatically find the similari-
ties between different APIs as well as collect and interpret
these similarities into a domain ontology. In order to obtain
an ontology we need to perform the following sequence of
steps: 1) Establish the scope of analysis, 2) Select the set of
APIs, 3) Run the concept identification algorithm, 4) Elimi-
nate the noise and validate the ontology.

Transform to OWL. In order to make the ontology ac-
cessible by third parties we converted from the triples to
OWL format by using the following steps: 1) every subject
and object is a OWL class, for each of the verbs: isDoer,
hasProperty and actsOn we define an OWL property; 2) ev-
ery “subject – isA – object” triple is converted to the sub-
class relation between the corresponding OWL classes; 3)

each of the other triples of the form “X – verb – object” (X is
a set of concepts) is transformed into an OWL property (p)
with domain the union of the OWL classes corresponding to
the elements of X and the range the OWL class correspond-
ing to the object. The property p is an OWL sub-property
of the OWL property corresponding to the verb (as exem-
plified below). For the ontology fragment from Figure 3 we
produce the following OWL fragment:

<owl:Class rdf:ID="Window"/>
<owl:Class rdf:ID="Title"/>
<owl:Class rdf:ID="Dialog">
<subClassOf rdf:resource="#Window"/>

</Class>
<owl:Class rdf:ID="Refresh"/>
<owl:Class rdf:ID="Close"/>

<owl:ObjectProperty
rdf:about="#hasProperty"/>

<owl:ObjectProperty rdf:about="#isDoer"/>
<owl:ObjectProperty rdf:about="#actsOn"/>

<owl:ObjectProperty rdf:about="#hasTitle">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Window"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:subPropertyOf

rdf:resource="#hasProperty"/>
<rdfs:range rdf:resource="#Title"/>

</owl:ObjectProperty>

<owl:ObjectProperty
rdf:about="#actsOnWindow">

<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">

6

<rdf:Description rdf:about="#Close"/>
</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:subPropertyOf rdf:resource="#actsOn"/>
<rdfs:range rdf:resource="#Window"/>

</owl:ObjectProperty>

<owl:ObjectProperty
rdf:about="#performsRefresh">

<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<rdf:Description rdf:about="#Window"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:subPropertyOf

rdf:resource="#isDoer"/>
<rdfs:range rdf:resource="#Refresh"/>

</owl:ObjectProperty>

5 Experience

In the following we present our experience with building
and using the knowledge repository. Our repository cur-
rently contains only two ontologies: an ontology that cov-
ers the domain of graphical widgets and one that covers the
XML domain. This section follows two directions: at first
we report on the building of these ontologies and then we
present examples of applying these ontologies for concept
location and the evaluation of the domain coverage of the
Java AWT API.

Experimental setup. We performed experiments on two
sets of widespread APIs: The first set is represented by
the APIs that implement the functionality for processing
XML documents. In this case we chose the following APIs:
org.w3c.dom is the implementation of the W3C DOM
(Document Object Model) available in the Java standard li-
brary; dom4j2 open source library for working with XML;
jdom 3 library for accessing, manipulating, and outputting
XML data; xom 4 tree-based API for processing XML and
the XML processing API from the .NET framework. The
second set of APIs implement the functionality related to
graphical widgets: the AWT and SWING APIs from the Java
standard library, the Eclipse Standard Widget Toolkit (SWT),
and the .NET API from the namespace Windows.Forms.
Later, we found two more GUI APIs that we decided to
take into account – the Biss-AWT5 and the GTK6 APIs. We

2www.dom4j.org
3www.jdom.org
4www.xom.nu/
5http://www.biss-net.com/
6http://java-gnome.sourceforge.net/

used the extracted ontologies for locating concepts in the
JHotDraw framework (version 7.0.9).

Extracted ontologies. In Table 1 we provide the num-
ber of automatically extracted concepts and triples (raw)
and the number of concepts and of triples after our manual
validation. During the validation, we examined the triples
and eliminated those that represented pure implementation
noise as well as those that referred to very general concepts
that are not specific to the targeted domain. We notice that
in both of these cases ca. 50% of the extracted triples rep-
resented noise. However, this noise can be eliminated rel-
atively easy through manual inspection (in the case of the
XML ontology it took us ca. 1 hour and in the case of the
GUI ontology it took us ca. 3 hours). These ontologies,
both in the triple format as well as in the OWL format can
be downloaded from the following web address:
www4.in.tum.de/˜ratiu/knowledge_repository.html.

XML GUI
Raw concepts 271 853
Raw triples 674 2709
Validated concepts 164 456
Validated triples 319 1351

Table 1. Quantitative overview

Having an ontology that contains knowledge about pro-
gramming technologies and that is in a machine process-
able format is a gain per se. Obtaining such ontologies for
all programming technologies (by analyzing other libraries)
would cover a wide area of technical knowledge. In the fol-
lowing we give only hints of how such ontologies can be
used in software maintenance activities such as concept lo-
cation and evaluation of APIs.

Concept location. We use a method for locating concepts
in code that is based on mapping program entities to on-
tologies [13]. Whenever a mapping is found, we identify a
concept in the code.

In order to perform our experiments we choose the ver-
sion 7.0.9 of the drawing framework JHotDraw. It contains
7358 model elements that belong to the public interface
– public classes, attributes, methods and their parameters.
As knowledge bases we used both the GUI and the XML
ontologies. Our concept location algorithm identified con-
cepts from both of these ontologies – JHotDraw uses both
the AWT, SWING and the w3c.dom APIs. Our algorithm
identified 243 concepts in JHotDraw. These concepts were
assigned to 1388 program elements from the public inter-
face of JHotDraw.

By inspecting the program elements assigned to XML
concepts, we discovered the fact that JHotDraw contains

7

classes that use the nanoxml7 in addition to the w3c.dom

library. This represents a sanity check for our approach as
we validate that the XML concepts contained in our ontol-
ogy are general enough and do not depend on a particular
XML API. In Figure 7 we present an example of how was
the ELEMENT concept identified.

Element

Attribute ParentNamespace

XML Ontology net.n3.nanoxml

Content

XMLElement

Child attributes parentnamespace content children
hasPropertyLegend: hasAttribute

Figure 7. Concept identification example

Analyzing the coverage of APIs. In our second experi-
ment we use the GUI ontology in order to identify concepts
in the public interface of AWT. In Figure 8 we present a list
of concept names that were not identified in the AWT. In
order to find out the meaning of these concepts, we looked
in the GUI ontology. In Figure 9 we present the triples
from our ontology where the missing concepts from Fig-
ure 8 occur. We remark that many of the missing concepts
are related with each other and that they represent advanced
graphical features (tooltips, menu advanced accessibility,
special dialogs, browsing support, etc). By consulting a
comparison of AWT, SWING and SWT [19] we found out
that we accurately identified the coverage of AWT. The ex-
planation for the lack of advanced components is that AWT
is the lowest-common denominator for GUI components
defined for all Java host environments. Some commonly
used components, such as Tables, Trees, Progress Bars, and
others, are not supported. For applications that need more
component types, you need to create them from scratch.

Accelerator
Accessible
AccessibleDescription
Back
Browser
CheckBox
ClearSelection
Combo
ComboBox
Copy
Cut

PrintToFile
PrintDialog
Progress Bar
RadioButton
RadioMenuItem
Refresh
Scrollable
ScrollBar
ScrollEvent
Selection
SelectionCount

Editor
Empty
EventSelection
Expand
FontDialog
Forward
HtmlDocument
NextNode
Node
Paste
PageSetupDialog

SelectionIndex
SelectionMode
Slider
Spinner
Table
TableColumn
TableEditor
ToggleAction
Tool
Toolbar
ToolButton

ToolItem
ToolTip
ToolTipText
Tree
TreeCollapse
TreeEditor
TreeExpand
TreeNode

Figure 8. Concepts not implemented by AWT

Additionally, we further investigated the documentation
of AWT. We found that some of the concepts that we iden-
tified to be missing were in fact (indirectly) supported by
AWT (Figure 9 down). For example, even if AWT does not
provide direct support for radio buttons, they can be simu-
lated through check-boxes: the class Checkbox represents

7http://nanoxml.cyberelf.be/

Menu | hasProperty | Accelerator
Menu | hasProperty | Accessible Context
Menu Item | hasProperty | Accelerator

List | isDoer | Clear Selection
List | hasProperty | Selection
List | hasProperty | Selection Index
List | hasProperty | Selection Mode

Tree | hasProperty | Selection
Tree | hasProperty | Selection Count
Tree | isDoer | Tree Collapse
Tree | isDoer | Tree Expand
Tree Node | hasProperty | Next Node
Tree Node | hasProperty | Node

Radio Menu Item | isA | Menu Item

Show | actsOn | Url
Browser | hasProperty | Url
Browser | isDoer | Back
Browser | isDoer | Forward
Browser | isDoer | Refresh

Page Setup Dialog | isA | Dialog

Font Dialog | hasProperty | Font
Font Dialog | isA | Dialog
Font Dialog | isA | Window

Print Dialog | hasProperty | Print To File
Print Dialog | isA | Dialog

Table | hasProperty | Column
Table | hasProperty | Editor
Table | hasProperty | Selection
Table | isDoer | Select
Table Editor | isA | Editor

Table | hasProperty | Tool Tip Text
View | hasProperty | Tool Tip Text
Tree | hasProperty | Tool Tip Text
Tool Tip | hasProperty | Initial Delay
Tool Tip | hasProperty | Reshow Delay
Tool Tip | hasProperty | Text

Progress Bar | hasProperty | Style
Progress Bar | hasProperty | Text
Progress Bar | isA | Component
Progress Bar | isA | Control
Progress Bar | isDoer | Paint

Text | isDoer | Copy
Text | isDoer | Cut
Text | isDoer | Paste

Radio Button | isA | Button
Radio Button | isA | Toggle Button

Figure 9. Definition of the concepts not im-
plemented in AWT

also radio buttons and to create a radio button one needs to
create a checkbox and add it to a group. Another example,
are the concepts CUT, COPY and PASTE. Figure 9 shows
that these concepts belong to the set of actions that are done
by/on texts. From here, we deduced that the AWT does not
provide the functionality for copying text inside any of its
component. The manual inspection of the AWT documenta-
tion revealed that the TextArea class from AWT provides
this kind of functionality. However, it is implemented in
another manner and that is why we could not find it auto-
matically. The AWT implementation of these text opera-
tions (e.g. in the classes TextComponent and TextArea)
is of algorithmic nature – the cut, copy and paste are im-
plementable through a combination of selection, insert and
replace.

6 Scaling-up with Semantic Technologies

The most obvious link between our work and the seman-
tic web technologies is the usage of ontologies for sharing
the domain knowledge. The research on ontologies per-
formed in the semantic web and knowledge representation
communities led to a lot of valuable knowledge, methods

8

and tools for dealing with big ontologies. Below we point
out some of the most important problems and limitations
of our approach based on our experience. We envision
that semantic-web technologies can help in our endeavor of
building, validating, enriching and evolving ontologies. Be-
low we enumerate some of the most important open issues
that we currently face:

1. Obtaining richer ontologies. Currently we obtain
only light-weighted ontologies with a small number of re-
lation types between their concepts. Our ontologies can be
enriched along two directions: a) obtaining more relation
types between the concepts and (e.g. we use currently the
hasProperty both for properties and for parts of a concept)
2) towards heavier weighted ontologies with constraints be-
tween their concepts and relations.

2. Evolving the extracted ontologies. After the first
version of an ontology is built, it will need to be evolved
with new concepts and relations obtained by analyzing other
APIs. The new (partial) ontology needs to be merged with
the already existent ontology. This raises problems with re-
spect to the consistency of the merged ontology in terms of
conflicting relations between concepts or ambiguous termi-
nology (e.g. synonymy).

3. Manipulating big ontologies. In order to efficiently
manipulate (e.g. visualize, modify, check) big ontologies
(e.g. such as the GUI ontology that has over 450 concepts)
we need special tool support. This support goes beyond the
boundaries of a single tool – we rather need more mature
technologies for dealing with ontologies.

4. Validation of ontologies. In order to eliminate the
subjective bias in validating the ontology, the validation
should be performed independently by several domain ex-
perts. For example, some of the concepts belong to the core
of the domain but many other belong to the margins of the
domain but are (debatable) still relevant for describing the
domain.

5. Enrichment of ontologies. Once an ontology is val-
idated, it should be manually completed with the missing
concepts and relations between them. This manual work
requires a lot of effort and implies a high degree of sub-
jectivity. Furthermore, when new APIs are available, their
information should be easily added to a domain ontology.

6. Combination of ontologies. The peripheral concepts
from one ontology can be central in other ontologies. For
example, the concepts related to exception treatment are pe-
ripheral for GUIs but central for an ontology focused on er-
rors treatment. Therefore, we need to detect the overlapping
and between several domain ontologies.

Most of the above problems are central topics in the se-
mantic web community. Therefore, our project of build-
ing a repository of ontologies about programming technolo-
gies could highly benefit from the semantic web research.

For example, the existent ontology management tools can
be used for manually inspecting, visualizing or enhanc-
ing the extracted ontologies; the already existent semantic-
web technologies for ontologies merging and alignment [7]
could be used for evolving and combining different ontolo-
gies.

7 Related Work

Knowledge for program understanding. The central
role of knowledge management in the process of mainte-
nance in general and program understanding in particular
is widely acknowledged in the literature. In [2] software
maintenance is seen as a knowledge management issue.
Among the several dimensions of knowledge (e.g. busi-
ness knowledge, computer science knowledge), program-
mers most often make use of technical knowledge during
maintenance [3]. [4, 12] presents the role of concepts in
program comprehension. These concepts can be either do-
main concepts or technical oriented concepts. In order to
automatize the concepts-centered program understanding,
the tools have to be provided with a considerable amount of
knowledge that is relevant for understanding a program.

In this paper we advocate that in order to increase the ab-
straction level at which the automatic analyses are done, the
analysis tools need to be aware of the domain knowledge.
One of the modalities to share and formalize the knowledge
is through ontologies. In this paper we discuss the benefits
and the challenges that a repository of ontologies that con-
tain knowledge about the programming technologies bring
in the reverse engineering.

Knowledge representation in programs. This paper is
in continuation to our previous work on knowledge repre-
sentation in programs. In [15, 13, 16] we investigate dif-
ferent problems related to the implementation of domain
knowledge programs with focus on domain specific APIs.
One of the preconditions for the automatic location of con-
cepts and detection of API problems is the availability of
domain ontologies. Building large domain ontologies that
contain hundreds of concepts and relations between them
is challenging. Once such ontologies are available, they can
be used off-the-shelf for a wide variety of program analyses.

Ontologies in software maintenance. The LASSIE
system [6] represents one of the pioneering works in us-
ing ontologies in software maintenance. It uses a knowl-
edge base system for intelligently indexing reusable com-
ponents. The approach is based on mapping between a do-
main ontology and the code model. Although the code on-
tology is populated automatically, the domain ontology and
its relation to the code model must be maintained manually.
Such a system proved to support comprehension tasks but
the overhead of manually synchronizing the models reduced
the overall benefit. [20] presents an approach for represent-

9

ing both the source code and the documentation as ontolo-
gies and thereby it enables the usage of semantic web tech-
nologies in the software maintenance. The semantic of the
domain is captured through the analysis of the program’s
documentation.

The ontologies provided by our repository can be used as
complementary sources of knowledge that addresses techni-
cal domains typically implemented in APIs.

Extracting ontologies. [18] presents a method for ex-
tracting an ontology that corresponds to an API by an-
alyzing the javadoc comments. The motivation for this
work is description of web services based on the function-
ality of their underlying implementation. In [21] is pro-
posed an approach for extracting ontologies from legacy
systems (COBOL in this example). The ontology is ex-
tracted through a transformation of program elements in en-
tities of the ontology: records in classes, sub-record relation
among records in the is-a hierarchy between their corre-
sponding classes and of program functions in functions in
the ontology. This approach provides a representation of a
program as an ontology.

We advance in the direction of extracting ontologies
from programs along two directions: Firstly, we capture
the domain knowledge by analyzing multiple APIs. Sec-
ondly, we extract ontologies by analyzing the structure of
the program (APIs) and not by performing natural language
processing.

8 Conclusions and Future Work

In this paper we advocate that a repository of com-
mon programming technologies knowledge would increase
the automation and abstraction level at which many of the
current programming and maintenance activities are per-
formed. We also present a method for efficiently building
such a repository based on the semi-automatic extraction of
domain knowledge from domain specific APIs. We present
our experience with using ontologies for program analysis.
Based on our experience we identify key issues in scaling
up and where can the semantic technologies contribute.

We are aware that this work represents only the first steps
in achieving a mature repository of programming technolo-
gies knowledge. However, once a repository is available,
it will both increase the abstraction level of the current re-
verse engineering analyses and will enable new code anal-
yses. Therefore, we strongly believe that such a reposi-
tory is of interest for the maintenance community and that
it should be built, validated and enhanced as a community
process. We are currently working to extend the repository
with knowledge about other technical domains (e.g. net-
working, databases) and by analyzing more APIs that are
written in other languages (e.g. C++ and Smalltalk).

References

[1] N. Anquetil. Characterizing the informal knowledge con-
tained in systems. In WCRE’01, pages 166–175. IEEE CS,
2001.

[2] N. Anquetil, K. M. de Oliveira, K. D. de Sousa, and M. G. B.
Dias. Software maintenance seen as a knowledge manage-
ment issue. Inf. & Sof. Tech., 49(5):515–529, 2007.

[3] N. Anquetil, K. M. de Oliveira, M. G. B. Dias, M. Ramal,
and R. de Moura Meneses. Knowledge for software mainte-
nance. In SEKE’03, pages 61–68, 2003.

[4] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
ICSE’93. IEEE CS, 1993.

[5] R. Clayton, S. Rugaber, and L. Wills. On the knowledge
required to understand a program. In WCRE’98, page 69,
Washington, DC, USA, 1998. IEEE CS.

[6] P. Devanbu, R. Brachman, and P. G. Selfridge. Lassie: a
knowledge-based software information system. Commun.
ACM, 34(5):34–49, 1991.

[7] M. Ehrig. Ontology Alignment - Bridging the Semantic Gap.
Spinger, 2007.

[8] M. R. Genesereth and N. J. Nilsson. Logical foundations
of artificial intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1987.

[9] T. R. Gruber. Toward principles for the design of ontologies
used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907–928, 1995.

[10] P. E. Hayes. Rdf semantics. Technical report, W3C Recom-
mendation, 2004.

[11] D. L. McGuinness. Ontologies come of age. In Spinning the
Semantic Web, 2003.

[12] V. Rajlich and N. Wilde. The role of concepts in program
comprehension. In IWPC’02. IEEE CS, 2002.

[13] D. Ratiu and F. Deissenboeck. From reality to programs and
(not quite) back again. In ICPC’07. IEEE CS, 2007.

[14] D. Ratiu, M. Feilkas, and J. Juerjens. Extracting domain
ontologies from domain-specific APIs. In CSMR’08. IEEE
CS, 2008.

[15] D. Ratiu and J. Juerjens. The reality of libraries. In
CSMR’07. IEEE CS, 2007.

[16] D. Ratiu and J. Juerjens. Evaluating the reference and rep-
resentation of domain concepts in APIs. In ICPC’08. IEEE
CS, 2008.

[17] I. Rus and M. Lindvall. Knowledge management in software
engineering. IEEE Software, 19(3):26 – 38, May-June 2004.

[18] M. Sabou. Extracting ontologies from software documenta-
tion: a semi-automatic method and its evaluation. In ECAI-
OLP’04, 2004.

[19] SWT, Swing or AWT: Which is right for you.
www.ibm.com/developerworks/grid/library/os-swingswt/,
2008.

[20] R. Witte, Y. Zhang, and J. Rilling. Empowering software
maintainers with semantic web technologies. In ESWC’07,
pages 37–52, 2007.

[21] H. Yang, Z. Cui, and P. O’Brien. Extracting ontologies from
legacy systems for understanding and re-engineering. In
COMPSAC ’99. IEEE Comp. Soc., 1999.

10

