Static Bug Detection Through
Analysis of Inconsistent Clones

Elmar Juergens, Benjamin Hummel, Florian Deissenboeck, Martin Feilkas

Institut fiir Informatik
Technische Universitéat Miinchen
{juergens, hummelb,deissenb, feilkas}@in.tum.de

Abstract. Existing software systems contain a significant amount of
duplicated code. Such redundancy can negatively impact program cor-
rectness, since inconsistent updates to duplicated code fragments are
prone to introduce subtle bugs. This paper outlines our work-in-progress
to statically detect inconsistencies in duplicated code fragments in or-
der to find clone-related bugs. We illustrate the problem of clone related
bugs with the example of such a bug in Eclipse, outline our algorithm
for detecting inconsistencies in clones and report initial experiences from
an industrial case study conducted with the Munich Re Group.

1 Introduction

Existing research in clone detection indicates that software systems typically
contain a significant amount of duplicated code. Of all lines of code in the re-
spective system, 8,7% of GCC [DRD99], 19% of X Windows [Ba95], 22,7% of
Linux and 29% of JDK [Li06] have been found to be part of at least one duplica-
tion. Code duplication can be observed independent of programming language,
target platform or application domain [Ko07].

Cloning renders maintenance difficult, since changes to one instance of a
duplication (clone) potentially affect the other clones as well. Or, if a bug is
contained in a duplicated code fragment, it needs to be removed from all its
clones. If one or more clones are overlooked by the developer while he performs
the change operation, subtle bugs can be introduced, or known bugs can re-
main in a system. In response to this, numerous clone detection approaches and
tools that help to identify regions of duplicated code have been proposed by
the research community [Ko07]. Such tools are valuable in reducing the risk of
introducing inconsistencies during maintenance of duplicated code, since they
help programmers in identifying all potentially affected code fragments during
a change operation. Their shortcoming is that they cannot detect clone-related
bugs once they have entered a system. To mitigate this, we outline an analytic
approach that helps to detect faults causing such bugs contained in a system.

Contribution: We illustrate the risk cloning poses to program correctness
and propose an approach to statically detect clone-related bugs. Our approach
is applicable to both modern and legacy programming languages, for which few
bug detectors exist. We show preliminary results from an industrial case study
that indicate that we can detect a significant number of defects in practice.

2 Detecting Inconsistently Evolved Clones

A clone is a sequence of statements that can be found more than once in a
software system'. An inconsistent clone is a sequence of statements that would
become a clone, if we inserted or deleted a small number of statements. An
example of this is illustrated in Figure 2 that displays a code fragment from
Eclipse 3.2.2, in which the statement target.appendChild(export) is missing
on the left side?. As can be seen, the fragments of an inconsistent clone that are

separated by gaps (insertions or deletions), are shorter clones themselves.

FeatureExportWizard java

FluginExportizard java

protected Docurment generatednkT ask)
bry |
DocumentBuilderFactory Factory =
DocumentBuilderFactory . newInstance();
Document doc =
factory. newDocurmentBuilder (). newDocument();
Element root = doc.createElement " project™;
rook.setattributel"name", "build");
rook. sekattribute"default”, "feature_export™);
doc.appendChild{roat);

Element target = doc.createElement("target");
target. setattribute("name", "feature_export™);
rook. appendChild{target);

export, setaktribute{"features”, getFeatureIDs()y;
export, setattributel"destination”, fPage. getDestinationd));
String Filename = FPage. getFileMamel);
if {Filename '= nully
export, setattributed"flename", filename);
export, setattribute"export Type", getExportOperation{));
export, setattributel"useJARFormat”,
Boolean, tostringlfPage . useJARFormat(yl);
export, setattributel"exportSource”,
Boolean. tosString{fPage. doExport Sourced)));

Element export = doc. createElement"pde. exportFeatures");

protected Docunient generatedntTaskD)
try {
DocumentBuilderFactory Factory =
DocumentBuilderFactory. newInstance);
Docurnent doc =
factory newDocumentBuilder(), newDocument();
Element root = doc.createElement " project™;
ook, sekattribute"name", "build"y;
rook. setattributel"default”, "plugin_export™);
doc.appendChildiroat);

Element target = doc.createElement("target");

target. setattribute("name", "plugin_export™;
root. appendChild(target);

Element export = doc.createElement("pde. exportPlugins"
expart, setattribute("plugins, getPluginIDs());
export, setAtkributed"destination”, fPage.getDestinationd));
String Filename = FPage. getFileMNamel);
if {Filename '= nully

export, setattributel " Flename”, filename);
export, setatkributel"export Type", getExportOperation));
export, setAtkributel"useJARFormat”,

Bioolean, taStrinalfPane, use JAR Formatl 10
export, setAtkributel"exportSource”,

Boolean. tostring{fPage. doExportSourced 1))

return doc;
+ catch (DOMException e) {
+ catch {FactoryConfigurationError e) {
+ catch {ParserConfigurationException &) {

return null;

target. appendChild{export);

return doc;
t catch {DOMException &) {
+ catch {FactoryConfigurationError &) §
+ catch {ParserConfigurationException &) {

rekurn null;

Fig. 1. Bug 155070 in Eclipse 3.2.2

This observation leads to a first simple algorithm for finding inconsistent
clones: Firstly, it determines all consistent clones using one of the existing clone
detection algorithms. Then it looks for pairs of clones which, together with their
siblings, are sufficiently close to each other. These are then assembled into a single
inconsistent clone. We implemented this detection algorithm as part of our open
source software Continuous Quality Assessment Toolkit ConQAT [DPS05] that
implements an extensible clone detection tool. Due to the language independence
of the inconsistency detection, our implementation can be used with all languages
that ConQAT supports, namely C/C++, Java, VB, C#, PL/I and Cobol.

! Typically minor differences in identifier naming or literal values are ignored.
2 The missing statement results in loss of information and leads to incomplete gener-
ated XML. It is the cause of Eclipse Bug 155070.

3 Case Study

We have performed a case study of clone-related bugs due to inconsistent clones
on an industrial business information system from the financial domain that is
developed and maintained at the Munich Re Group. The system comprises 400
kLoC of C#, of which 215 kLoC are handwritten®.

Setup: We performed the analysis in three steps: Firstly, we applied our tool
to detect inconsistent clones. Secondly, we manually inspected the detected
inconsistent clones to exclude inconsistencies that obviously do not indicate
bugs and categorized the remaining inconsistencies according to their de-
fect probability. Thirdly, the remaining inconsistencies are currently being
inspected by the developers of the system under investigation.

Results: The detection produced 106 inconsistent clones (comprising 272 code
fragments) and took approx. 30s and 40MB on a 1.7 GHz notebook. Manual
investigation identified 67 inconsistent clones to be false positives, typically
due to purely syntactical differences (e.g. inconsistent use of braces surround-
ing single statement conditionals and loops, order of commutative statements
or use of local or fully qualified names). Of the remaining 39 inconsistencies
(comprising 89 code fragments), 11 could be classified as bugs for technical
reasons due to missing or incomplete null checks or inconsistent use of break
statements that cause different behavior of the same algorithm in different
places of the system. 8 inconsistencies due to unused or commented code
were classified as style issues that, although they do not present defects at
present, should be mended in order to simplify future maintenance. The re-
maining 20 inconsistencies were mainly caused by differences in conditions
or missing method calls and cause variations in the system’s behavior. More
detailed knowledge about the system than available to us is required to de-
cide whether they are desired or erroneous. They are still under investigation
by the system’s developers, but preliminary results are very promising.

Discussion: Although the evaluation result of 20 inconsistent clones by the sys-

tem developers is still pending, the 11 bugs and 8 style issues identified by
our analysis already indicate a substantial value of our analysis in practice.
The resulting precision of 18%-38% (depending on the 20 pending assess-
ments) can, while acceptable, still be improved by ignoring purely syntactic
inconsistencies such as those mentioned above.
The current analysis approach still has drawbacks, since it only detects in-
consistencies with a single gap that are encased by sufficiently large clones.
Hence, we might miss relevant inconsistencies that are encased by clones
that are too small to be discovered by the initial consistent clone detection
phase. We plan to improve on this by applying an algorithm that directly
detects gapped clones in our future work. The parameters for minimal clone
and maximal gap size heavily influence precision and recall of detection re-
sults. Our choice of 5 as threshold for both for our case study is based on
our experience gained in early experiments and demands further research.

3 The remaining code is generated and has been excluded from the analysis, since it is
not maintained by hand and thus cannot suffer from inconsistent manual changes.

4 Related Work

A variety of approaches and tools that search for bugs by performing different
types of static program analyses—such as syntactic pattern matching or data
flow analysis—has been proposed, see e.g. [RAF04,Zh06] for a survey. Our ap-
proach is complementary to them in that it detects bugs that typically cannot
be detected with existing tools, since it uses duplication inconsistencies as ad-
ditional information source unavailable to them. A large body of research exists
that deals with various aspects, i.e. origin, evolution, detection and removal
of cloning. Due to space constraints, please refer to Koschke’s comprehensive
survey [Ko07]. Approaches to detect gapped clones exist [Ko07], but are not tar-
geted at bug detection. To our knowledge, only two approaches exist that employ
clone detection to detect bugs. In [Li06], Li et. al. search for inconsistently re-
named variables to detect clone-related bugs. In [JSC07], Jiang et.al. extend
that approach by searching for different contexts of duplicated code fragments
that potentially indicate bugs. Both approaches focus on detecting bugs that
have been introduced during clone creation. In contrast, our approach focuses
on detection of bugs introduced by inconsistent evolution of clones, which we
consider the bigger threat to program correctness in long lived software systems.

5 Future Work

Empirical Analysis: We plan to conduct a comprehensive industrial case study
to better understand the significance of clone-related bugs in practice.

Algorithm: We are currently developing an extension of suffix-tree based clone
detection that directly detects inconsistencies in clones. We expect this ap-
proach to yield better completeness than our current one.

Increasing precision: We plan to increase the precision of our approach to
detect clone-related bugs by ignoring purely syntactic inconsistencies and by
exploiting evolution information from the version control system.

References

[Ba95] B. S. Baker. On finding duplication and near-duplication in large software
systems. In Proceedings of WCRE 1995.

[DPS05] F. Deienbidck, M. Pizka, T. Seifert. Tool Support for Continuous Quality
Assessment. In STEP 2005.

[DRD99] S. Ducasse, M. Rieger, S. Demeyer. A Language Independent Approach for
Detecting Duplicated Code. In Proceedings of ICSM 1999.

[JSCO07] L. Jiang, Z. Su, E. Chiu. Context-Based Detection of Clone-Related Bugs.
In FSE 2007.

[Ko07] R. Koschke. Survey of Research on Software Clones. In Duplication, Re-
dundancy, and Similarity in Software, Dagstuhl Proceedings, 2007.

[Li06] Z. Li, S. Lu, S. Myagmar, Y. Zhou. CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale SW. IEEE TSE, 2006.

[RAF04] N. Rutar, C. B. Almazan, J. S. Foster. A Comparison of Bug Finding Tools
for Java. In Proceedings of ISSRE 200/.

[Zh06] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J.P. Hudepohl, M.A. Vouk.
On the value of static analysis for fault detection in SW. IEEE TSE, 2006.

