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Abstract

Finding, understanding and managing software clones — passages of dupli-
cated source code — is of large interest, as research shows. However, most
methods for detecting clones are limited to a single revision of a program.
To gain more insight into the impact of clones, their evolution has to be
understood. Current investigations on the evolution of clones detect clones
for different revisions separately and correlate them afterwards.

This thesis presents an incremental clone detection algorithm, which detects
clones in multiple revisions of a program. It creates a mapping between
clones of one revision to the next, supplying information about the addition,
deletion or modification of clones. The algorithm uses token-based clone
detection and requires less time than using an existing approach to detect
clones in each revision separately. The implementation of the algorithm has
been tested with large scale software systems.
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1 Introduction

To be faster or not to be faster:
That is the question!

1.1 Software Clones

Duplication of source code is a major problem in software development for
different reasons. The source code becomes larger [MLM96] and more diffi-
cult to understand, as copied passages have to be read and understood more
than once [BYM+98]. A very serious issue arises from errors, bugs, found
in any of the copies. In a lot of cases, copies are not created to be identical
parts of code, but serve as basic structure for the new code to be written.
This means that slight changes are made to copies like renaming identifiers
or changing constants [MLM96]. The more changes are made to the copies,
the harder they become to trace. If bugs are found in the unchanged part,
there are no sophisticated means of retrieving all other copies which need
to be changed as well [Bak95, DRD99, Joh94, KKI02, Kon97]. This might
lead to inconsistent changes of parts which are actually meant to be equal
[KN05, Kri07].

Apart from the negative side, there is quite a diverse range of more or less
comprehensible reasons for copying source code. The first striking reason is
simplicity. It is often easier to copy and maybe slightly modify an existing
portion of code than rethinking and writing things from scratch. This re-
duces the probability of introducing new bugs, assuming the original code
is known to work reliably [Bak95, BYM+98, DRD99, Joh94]. In highly op-
timized systems, the overhead of additional procedure calls resulting from
an extract method refactoring [Fow99] might not be acceptable. Parts of the
code which are frequently executed are repeated instead of being abstracted
into a new function [Bak95, BYM+98, DRD99, KKI02]. Architectural rea-
sons, which include maintenance issues and coding style, might also require
the repetition of code [Bak95, MLM96, BYM+98]. In addition to inten-
tionally duplicated code, passages might be accidentally repeated. Uninten-
tional repetition might emerge from frequently used patterns of the program-
ming language or certain protocols for using libraries and data structures
[BYM+98, KKI02]. Finally, non-technical issues can lead to code duplica-
tion. If a programmer is assessed by the amount of code he or she writes, it
is quite tempting to copy portions of code [Bak95, DRD99].

Although the negative impact of copied source code passages, clones, is not
yet proven and several works discuss this topic contrarily [KG06, KSNM05,
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Kri07, LWN07], information about the presence and evolution of clones is
of great interest to study their influence on a system. Several approaches
have been presented for finding and analyzing clones. The following section
gives an overview over different methods used in software clone detection.

1.2 Detecting Clones

Preventing duplication of code right from the start is a rather illusive ob-
jective as there are diverse reasons for copying passages of source code as
mentioned above. Instead, a lot of effort is spent on finding clones in exist-
ing source code using a clone detection algorithm. The term software clone
detection summarizes all methods that focus on finding similar passages of
source code in a software system.

Different algorithms operate on different abstractions of a program to find
clones. The most basic abstraction is the source code itself. Certain ap-
proaches use the source text, with or without normalizing it, and find clones
by applying textual comparison techniques [DRD99, Joh94, WM05]. With-
out normalizing the source code, any yet so small difference like whitespace
or comments in source passages can prevent tools from reporting clones.
Though textual comparison is relatively fast and easy to apply, the qual-
ity of the results might lack from disregarding any syntactic or semantic
information of the source code.

Other methods operate on the token string (see Section 2.1) that is produced
from the program’s source code by running a lexer on it. By knowing some-
thing about the syntax of the program, these methods are able to abstract
from certain aspects of the source text like whitespace and text format-
ting in general. Within the string of tokens, similar substrings are searched
and reported as clones [Bak95, CDS04, KKI02, LLM06]. The advantage of
token-based clone detection is that it performs very well, as the source code
needs only to be converted into a string of tokens. The detection is also
language independent as long as there exists a lexer for the language the
source code is written in. Another benefit is that the source code does not
need to be compilable and the detection can be run in any stage during the
development of a program.

Yet other approaches search for clones based on the AST (Abstract Syntax
Tree) of the program. Within the AST, subtrees are compared against each
other and sufficiently similar subtrees are reported as clones. As the number
of comparisons can rapidly grow fast due to an AST with n subtrees requir-
ing n2 comparisons, different criteria are used to select trees which need to
be compared against each other [BYM+98, EFM07, JMSG07, Yan91]. Other
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methods use the AST just as an intermediate result and do further process-
ing in order to find clones [KFF06, WSvGF04]. As the syntactic structure
of a program is represented inside the AST, tree-based approaches are able
to report clones which are usually not detected by the previous methods.
These include for example commutative operations where the order of the
two operands has been inverted. Although the usefulness of reported clones
is increased, performance is a critical issue for tree-based detection.

Apart from the AST, the PDG (Program Dependency Graph) might be con-
sidered for drawing conclusions about clones [KH01, Kri01]. A PDG rep-
resents the data flow and control flow inside a program. Inside the PDG,
similar subgraph structures are used to identify clones. The additional in-
formation that is obtained from the PDG allows to improve the quality of
reported clones. On the other hand, creating a PDG and searching clones
within it can be very costly. Like tree-based detection, graph-based ap-
proaches depend on the programming language of the program analyzed.

A rather different approach to finding clones is based on metrics retrieved
for syntactic units of the program [DBF+95, MLM96, PMDL99]. If certain
units are equal or similar in their metric values, they are supposed to be
clones. This is based on the assumption, that if two units are equal in
their metric values, they are equal — or at least sufficiently similar — to be
reported as clones. In any case, metrics have to be chosen carefully in order
to retrieve useful results.

All these approaches have advantages and drawbacks. Which method yields
the best results for a given scenario depends to a large extend on the spe-
cific application. A comparison of selected clone detection methods which
operate on different abstractions of a program can be found in [Bel07].

Though being quite diverse, all these approaches have in common that they
are all targeted at analyzing a single revision1 of a program. For many
applications this is the desired behavior, but still there are scenarios which
require more than the analysis of a single revision. Considering all questions
aimed at the evolution of software clones requires analyzing more than one
revision of a program. Current approaches trying to answer evolutionary
questions about software clones usually start by analyzing each revision of
the program separately, utilizing one of the existing detection techniques.
After the clones have been identified for each revision, clones of different re-
visions are matched against each other based on some definition of similarity
[ACPM01, KSNM05, Kri07]. If a clone in revision i is adequately similar to
a clone in revision i − 1, it is assumed that the clone is the same. Some of

1Within the context of this thesis, a revision is seen as a state of program’s source code
at a specific point of time
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these methods are summarized in Section 4. There are however two major
issues concerning these approaches.

• Although running adequately fast, all clone detection algorithms still
need a noticeable amount of time to produce their results. If a huge
amount of revisions of a program is to be analyzed, the time tall re-
quired to get results, is a multiple of the time needed to process a
single revision tsingle. Assuming that the time tsingle is approximately
the same for every revision, the overall time to analyze n revisions is

tall ≈ n · tsingle

The assumption is, that a lot of processing steps are repeated redun-
dantly. Intermediate results which might be reused in the analysis of
the next revision are discarded and need to be recomputed for every
revision, causing an unnecessary overhead. This results in large parts
of the program to be analyzed over and over again for each revision,
although most parts of the source code did not change at all.

• If every revision of the software is analyzed on its own, the results are
independent sets of clones. An important thing missing is the mapping
from the clones of one revision to the clones of the next revision. The
information about the changes that happened to each single clone is
not provided and has to be calculated later.

Figure 1 shows conventional clone detection applied to multiple revisions
of a program. Assuming that changes between revisions i and i + 1 stay
in a limited range, many calculations are done redundantly. Furthermore,
the mapping between clones of revision i and i + 1 is not created by the
algorithm as every revision is analyzed on its own.

The issues mentioned above and the fact that more and more questions are
directed towards the evolution of clones [HK08] suggest a detection algo-
rithm that is designed to analyze more than one revision of a program and
tries to exploit this attitude as much as possible. Having such an algorithm
is desirable as it would most likely save huge amounts of time when analyzing
many revisions of a program. Furthermore, it would make clones traceable
across revisions and allow analyses of the evolution of clones. This in turn
would help answering the question of the harmfulness of clones. The answer
is important, because if clones are not to be considered harmful, then the
effort spent on finding and removing them is not legitimate.
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Figure 1 – Conventional clone detection applied to multiple re-
visions of a program. Calculations are unnecessarily repeated and
the mapping between clones is unsure. Solid arrows indicate input
and output of the algorithm. Dashed arrows represent the mapping
between two clone sets.

Another scenario that might be thought of, is the integration of “on-line”
clone detection into an IDE (Integrated Development Environment). On-
line clone detection reports any changes of clone pairs to the user while he
or she is editing the source files of a program. This prevents the user from
accidentally introducing new clones or doing inconsistent changes to existing
clones. The detection algorithm runs in the background and when the user
changes a file, the set of clones is updated accordingly and changes to clones
are reported to the user.

1.3 Research Questions

The overall task of this thesis is to develop and implement an incremen-
tal clone detection algorithm that requires less time for clone detection in
multiple revisions of a program than the separate application of an existing
approach. In addition, a mapping between the clones of every two consecu-
tive revisions must be generated. To guide the development and assist the
achievement of the task, a number of research questions are given which are
to be answered within this thesis.

1.3.1 Multi-Revision Detection

The first part of the task addresses the time tall which is needed to analyze
n revisions of a program’s source code. The assumption is, that time can
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be saved by eliminating unnecessary calculations resulting from discarding
intermediate results. It is desirable to make tall < n · tsingle true. Instead of
starting from the very beginning, the analysis of a revision should reuse and
modify results of the previous revision. This requires an overview over all re-
sults which are produced during the clone detection process and assessment
of whether they might serve for being reused.

Question 1 – Which intermediate results can potentially be reused to ac-
celerate multi-revision clone detection?

It is very unlikely, that reuse can happen straight away, because the inter-
mediate results are not designed for being reused. It is very probable that
certain problems arise which must be solved to make the results reusable.

Question 2 – Which problems arise from reusing intermediate results and
how can they be solved?

After solutions have been given to the problem of reusing intermediate re-
sults, a concrete algorithm needs to be presented that puts multi-revision
clone detection into practice. The algorithm has to implement the conclu-
sions drawn from answering the previous two questions.

Question 3 – How does an incremental clone detection algorithm look like?

1.3.2 Tracing

Apart from improving the performance, clones of one revision are to be
mapped to the clones of the previous revision. In the simplest case, clones
remain untouched and no change happens to any clone. On the other hand,
clones can be introduced, modified, or vanish due to the modification of the
files they are contained in. The different changes that can happen to a clone
must be summarized.

Question 4 – Which changes can happen to a clone between two revisions?

Knowing about the nature of changes, it might be possible to draw conclu-
sions about changed clones from the modification of intermediate results. It
is assumed that changes can be derived and do not need to be recreated in
a separate phase.

Question 5 – How can changes to clones be derived while reusing interme-
diate results?
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If not all changes can be concluded from the modification of results, the
remaining changes have to be obtained in a post-processing step. This re-
quires a method that is able to locate a clone from revision i in revision
i + 1.

Question 6 – How can a clone in revision i be found in revision i + 1?

1.3.3 Implementation and Evaluation

It is not only required to present the conceptual ideas for incremental clone
detection, but also to implement them. The underlying use case for the
implementation of an incremental clone detection algorithm is, that given
multiple revisions of a program, the clones in each revision are to be detected.
It is required, that the incremental algorithm produces its results faster
than separate applications of an existing approach. As implementing clone
detection from scratch goes far beyond the scope of this thesis, an existing
implementation is to be modified. This limits the diversity of theoretical
and practical options that can be explored.

The existing tool which serves as a starting point for the implementation
is the tool clones from the project Bauhaus2. The performance of the new
algorithm’s implementation is tested against the performance of clones to
keep results comparable.

Question 7 – How does the new implementation perform in comparison to
clones, regarding time and memory consumption?

It is assumed, that no general statement can be made about how much time
can be saved by using incremental clone detection. The time most likely
depends on different factors which influence the detection process.

Question 8 – Which factors influence the time required by the new imple-
mentation?

The answers to these questions are gained by developing and implementing
the incremental clone detection algorithm. They are given at the respective
locations within this thesis.

2http://www.bauhaus-stuttgart.de/
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1.4 Thesis Structure

This thesis is organized as follows. Section 2 introduces the necessary con-
cepts related to software clone detection. It explains the clone detection
process as implemented in the tool clones. Section 3 answers the questions
related to multi-revision analyses and presents an incremental clone detec-
tion algorithm. Section 4 explains changes that can happen to clones and
describes how clones can be traced across revisions. Section 5 summarizes
the tests that have been run to answer the questions directed at the perfor-
mance of the implementation. Conclusions and ideas for future development
are given in Section 6.
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2 Background

This section introduces the necessary concepts for understanding the prob-
lem of incremental clone detection and the solution presented in this thesis.
Section 2.1 explains tokens and token tables. Section 2.2 explains terms re-
lated to software clone detection which are unfortunately used with different
meanings by different publications. Therefore it is necessary to have a com-
mon understanding of these terms in order to avoid any confusion. Section
2.3 introduces the concept of suffix trees. The relation between clone pairs
and suffix trees is outlined in Section 2.4. Finally, Section 2.5 introduces
token-based clone detection as implemented in the tool clones by describing
the major phases.

2.1 Tokens and Token Tables

Throughout this thesis, the word token will be used frequently as clone
detection using the tool clones is based on sequences of tokens forming
clones. Aho et al. define a token as follows:

“[. . . ] tokens, that are sequences of characters having a collective
meaning.” [ASU86]

A token is an atomic syntactic element of a programming language (i.e. a
keyword, an operator, an identifier,. . . ). In addition, clones also recognizes
preprocessor directives as tokens. A sequence of successive tokens is referred
to as a token string. Each token has certain properties which are accessed
in different stages of the clone detection procedure. Among the important
properties of a token are the following:

• Index: The index of the token inside the token table in which it is
contained.

• Type: Every token has a type describing the nature of the token.
Example types are +, =, while or <identifier>.

• Value: Tokens which are identifiers or literals have a value in addition
to their type. Identifiers have their actual name being the token’s
value. Literals have the value represented by their string, for instance,
literal “1” has an integer value 1.

• File: The source file which contains the token.
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• Line: The line in the source file in which contains the token.

• Column: The column in the source file in which the token starts.
Lines and columns are counted starting from 1.

Tokens are stored inside a token table which holds a number of tokens along
with their properties. By using a token’s index, the token table allows fast
access to the token’s properties. A token table is created using a scanner or
lexer which translates a source code file into a sequence of tokens. A simple
token table is shown in Table 1.

Index 0 1 2 3 4
Type <identifier> = <identifier> + <number>

Value a b 3

File sample.c sample.c sample.c sample.c sample.c

Line 1 1 1 1 1

Column 1 3 5 7 9

Table 1 – A sample token table for the input a = b + 3 contained
in a file called sample.c.

2.2 Fragments and Clone Pairs

When talking about software clones, it is very helpful to have a shared under-
standing of terms and concepts used to describe clones and relations among
them. Far too often, terms like clone and clone pair are used inconsistently,
leading to confusion or requiring additional explanation whenever used.

Although the word clone is used in almost every publication related to
software clone detection, there exists no definition and no sufficiently com-
mon understanding of what is to be treated as a clone and what is not
[KAG+07, Wal07]. To avoid any misunderstanding, this thesis will not give
any concrete meaning to the word clone on its own. Different words are
used to describe related concepts. The following sections explain the terms
fragment and clone pair and state how they are used within this document.

2.2.1 Fragment

Throughout this thesis, the word fragment refers to a passage in the source
code. A fragment consists of a sequence of consecutive tokens. Having a
well-defined location, a fragment can be described as a triple
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fragment = (file, start, end)

with file being the file in which the fragment appears, start the first token3

in the given file which is part of the fragment, and end representing the last
token belonging to the fragment. All tokens between start and end are part
of the fragment.

A fragment on its own is not very helpful without knowing whether and
which parts of the source code it actually equals. The relation between
fragments is described in form of a clone pair.

2.2.2 Clone Pair

A clone pair is the relation between exactly two fragments that are similar
to a certain degree or even identical. A clone pair can be described as

clone pair = (fragmentA, fragmentB, type)

where fragmentA and fragmentB are fragments as described above. In
order to express different levels of similarity between two fragments, the
clone pair has a type in addition to the two source code fragments. Among
various descriptions of the similarity between code fragments is the one
classifying clone pairs according to four different types. Type 1 to type
3 describe a textual similarity between fragments whereas type 4 refers to
fragments which are similar in their semantic.

Type 1: Within a clone pair of type 1, both fragments are exactly equal
disregarding comments and whitespace. All tokens at corresponding posi-
tions in the two fragments are identical in their type and their value. An
example of a type-1 clone pair can be found in Figure 2.

1 int a = 0;

2 b = a * a;

3 string = "Peter";

(a) fragmentA

1 int a = 0;

2 b = a * a; // Comment

3 string = "Peter";

(b) fragmentB

Figure 2 – A clone pair of type 1.

3For further processing of fragments — especially by humans — it might be more
helpful to give the start and end of a fragment in line numbers. Therefore the token
information is converted to line information just before outputting the result.
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Type 2: A clone pair of type 2 consists of two fragments whose tokens
are identical in their type. In contrast to a type-1 clone pair, the values of
identifiers or literals do not need to be identical. Type-2 clone pairs are those
where source code has been copied and the names of identifiers have been
changed afterwards. Depending on the application, it is sometimes required,
that identifiers have been consistently changed, meaning there needs to exist
a one-to-one mapping between the identifiers of the first fragment to the ones
of the second fragment. Baker presented a method for finding type-2 clone
pairs with consistent changes, also referred to as parameterized duplication
[Bak97]. An example clone pair of type 2 is shown in Figure 3.

1 int a = 1;

2 b = a * a;

3 string = "Pan";

(a) fragmentA

1 int d = 1;

2 d = d * c; // Comment

3 string = "Pan";

(b) fragmentB

Figure 3 – A clone pair of type 2 with inconsistent renaming.

In addition to type-1 and type-2 clone pairs, there are two more types which
describe more inconspicuous relations between clones. These are given for
completeness, but are not considered in this thesis due to their complexity
and lack of a concise definition.

Type 3: Type-3 clone pairs combine two or more adjacent clone pairs of
the preceding types. These clone pairs may be separated by small code
fragments which are not identical. The motivation for type-3 clone pairs is
to find pairs which have been modified by inserting or removing tokens from
one of the fragments. Such a situation may indicate that a mistake has been
found and corrected in one of the fragments, but the other fragment stayed
unchanged.

Type 4: Between the fragments of a type-4 clone pair exists an even more
vague relation concerning the behavior of the fragments. Code fragments
belonging to a clone pair of type 4 carry out similar tasks and are similar in
their semantic.

An important property of clone pairs is, that the relation between the two
fragments is symmetric, meaning that the existence of clone pair cp1 =
(fragmentA, fragmentB, type) requires the existence of clone pair cp2 =
(fragmentB, fragmentA, type). Though being formally correct, the infor-
mation contained in both clone pairs is the same and therefore this docu-
ment abstracts from the order in which the two fragments appear, making
the following always true.
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(fragmentA, fragmentB, type) = cp = (fragmentB, fragmentA, type)

To ease the processing of clone pairs, each pair is normalized upon creation.
In a normalized clone pair, it is fixed which fragment is fragmentA and
which is fragmentB.

For clone pairs with type ≤ 2, the relation between the two fragments is
not only symmetric, but also transitive. From the existence of pairs cp1 =
(fragmentA, fragmentB, type) and cp2 = (fragmentB, fragmentC , type)
follows, that the pair cp3 = (fragmentA, fragmentC , type) must exist.

The algorithm described in this thesis relates similar code fragments in terms
of clone pairs analogously to the tool clones. Still, other relations between
code fragments exist. Among them is the relation which groups two or
more similar fragments. This relation is usually called clone class or clone
community [MLM96].

2.3 Suffix Trees

Incremental clone detection, as described in this thesis, is based on gen-
eralized suffix trees. Therefore it is essential to have an understanding of
what suffix trees are and how they represent suffixes of strings of tokens.
Many different notions for strings, substrings and suffix trees have been
given [Bak93, FGM97, McC76]. This thesis follows the notion presented in
[FGM97] in most parts. Although the concepts of strings and suffix trees
are described by using strings of characters, the same applies to strings of
tokens.

2.3.1 Notion of Strings

A string X which is of length m is represented as X[0, m−1]. The character
at position i in X is denoted as X[i]. Any substring of X, containing the
characters at positions i, i+1, . . . , j is written as X[i, j] with 0 ≤ i ≤ j < m.
It follows that every substring X[j, m − 1] is a suffix and every substring
X[0, i] is a prefix of X. The string X contains m prefixes and m suffixes.
To ensure, that no suffix is a prefix of any other suffix, the last character
at position m − 1 of the string is globally unique. It does not match any
other character from string X and no character from any other string. The
unique character is represented as $, respectively $1, $2, . . . , $n if more than
one string is used.
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2.3.2 Nodes and Edges

A suffix tree is a tree-like data structure which represents all suffixes of a
given string X. Disregarding suffix links, which are introduced in Section
2.3.3, the suffix tree is a tree. Every leaf of the suffix tree represents one
suffix of X. This makes the suffix tree very useful for solving many problems
that deal with strings. Among the many applications, McCreight was one
of the first to create a suffix tree based upon which equal substrings within
a string can be searched [McC76].

Every edge of the suffix tree is labeled with a substring of X. To significantly
reduce the space needed by the tree, it is essential to specify the substring
by the indices of its first and last character i and j instead of specifying the
complete substring. This way, every edge label is a tuple (i, j) referring to
the substring X[i, j].

Every edge is connected to two nodes, the start node being the node directed
towards the root and the other one being its end node. An edge is called
internal if its end node is the start node of at least two other edges. If the
end node is not the start node of any other edge, then the edge is called
external. Note, that it is not possible for any node to have just one edge of
which it is the start node. The exception to this rule is the root node of the
tree in case of X being the empty string $.

Two edges are called siblings if they have the same start node. An important
property of suffix trees is, that no two siblings labels start with the same
character.

Every node except the root has a parent edge, being the edge of which it
is the end node. In addition, every node except the root has a parent node
being the start node of its parent edge. For the root of the tree, parent edge
and parent node are undefined. The path of a node is the string obtained
by concatenating all substrings, referred to by the edge labels from the root
to that node. Each node has a path length, which is length of its path. The
path length for the root is 0.

Like edges, a node is called internal if it is the start node of at least two edges,
otherwise it is called external or leaf. Note that every external edge has an
external end node and every external end node has an external parent edge.
Likewise, every internal edge has an internal end node and every internal
node has an internal parent edge. Every external node represents a suffix
of the string X which is equal to the path of that node. Therefore, a suffix
tree for a string of length m must have m external nodes and m external
edges.
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A suffix tree for the string X = babac$ is shown in Figure 4. Throughout
this document, certain things are to be considered for the visualization of
suffix trees. Squares represent external nodes, circles internal nodes. Solid
lines are edges connecting the nodes. Though being expressed by start
and end index, labels are usually shown as readable substrings to make the
understanding of figures easier. Any exceptions to these conventions are
mentioned in the description of the respective figure.

a

c$

2 2

0

1 1

5346

bac$c$bac$

ba
$c$

(a) Suffix tree with text labels.

2 2

0

1 1

5346

(4,5)

(5,5)

(2,5)(4,5)(2,5)

(4,5)

(0,1) (1,1)

(b) Suffix tree with indices for labels.

Figure 4 – Suffix tree for the string X = babac$. The path length
of every node is noted inside the node.

2.3.3 Suffix Links

In order to allow faster construction, suffix trees are augmented with so-
called suffix links between nodes. If the path from the root to a node rep-
resents the substring X[i, j], then the suffix link of that node points to the
node whose path represents the substring X[i + 1, j]. The suffix link of the
root is undefined.

Suffix links do not only help in construction, but also allow for fast nav-
igation inside a suffix tree. Following suffix links helps iterating over all
suffixes of a given string from longest to shortest, because every suffix link
points to the node whose path represents the next smaller suffix. As suffix
links decrease the readability of suffix trees, they will usually not be drawn
in figures within this thesis. The suffix tree from Figure 4 augmented with
suffix links is shown in Figure 5.

2.3.4 Construction

For long strings and real applications, a fast construction algorithm for suffix
trees is needed. Several construction algorithms that require time linear to
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bac$c$bac$

ba
$c$

Figure 5 – Suffix tree for the string X = babac$ augmented with
suffix links (dashed arrows).

the length of the input string have been presented [Bak97, McC76, Ukk95].
The two algorithms which are implemented and used by the tool clones are
the following:

Ukkonen: Ukkonen presented an on-line algorithm for constructing suffix
trees [Ukk95]. On-line refers to the algorithms property of processing char-
acters or tokens of the input string from the beginning to the end. At any
point of the construction, the suffix tree for the part of the string that has
already been processed is available. There is no need to know the complete
string upon starting the construction.

Baker (Parameterized Strings): Baker introduced an algorithm to find
parameterized duplication in strings [Bak97]. In addition, she presents a
modified version of McCreight’s algorithm, that allows construction of pa-
rameterized suffix trees for parameterized strings. A parameterized string
abstracts from the actual names of identifiers, but still preserves the order-
ing among them. This constructor is used by clones if type-2 clone pairs are
required to have a consistent renaming of identifiers.

2.3.5 Applications

The representation of all suffixes of a string in form of a suffix tree allows
to run many different algorithms that solve common search problems in
strings in adequate time [McC76]. Some example questions that can easily
be answered with the suffix tree built for the string X are:

• Is string W a substring of X?
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• Find all occurrences of a substring S in X.

• Find all maximal matches of substrings in X.

The last question is the one that is relevant for finding clones in software.
Assuming the whole source code is parsed into one token string, the search
for maximal matches of substrings reveals code fragments that are equal and
have therefore most probably been copied.

2.4 Clone Pairs and Suffix Trees

This section describes the relation between suffix trees and clone pairs. This
relation is used by Baker’s algorithm for extracting maximal matches from
a suffix tree and becomes relevant when the structure of the suffix tree is to
be modified.

Each internal node of a suffix tree represents a sequence of characters or
tokens that appears more than once inside the string from which the suffix
tree was built. As the sequence has at least one identical copy, it is a clone.
The token sequence of the clone is identical to the path of the internal node.
How often the sequence appears in the string is determined by the number
of leaves that can be reached from the internal node, because every leaf
represents a different suffix of the string.

Among these clones, every pair that can be formed is a clone pair as defined
in Section 2.2. However, many of these pairs are less interesting, because
they are not maximal and covered by other pairs. According to Baker,

“A match is maximal if it is neither left-extensible nor right-
extensible [. . . ]” [Bak93].

A clone pair cp = ((file1, start1, end1), (file2, start2, end2), type) is said to
be right-extensible if the token in file1 at position end1 +1 equals the token
in file2 at position end2 + 1. If that is the case, the match is not maximal,
because both fragments can be expanded by one token to the right. If
either end1 or end2 is the last token of the respective file, the match is not
right-extensible, because at least one token is undefined.

A clone pair cp = ((file1, start1, end1), (file2, start2, end2), type) is said to
be left-extensible if the token in file1 at position start1−1 equals the token
in file2 at position start2 − 1. This is also not recognized as a maximal
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match. Analogous to right-extensibility, if start1 or start2 denotes the first
token of the respective file, the clone pair is not said to be left-extensible.

There is however one problem concerning this definition. It does not con-
sider the case where one fragment is left-extensible and the other fragment
is right-extensible and both fragments still contain the same sequence of
tokens. Such situations appear in conjunction with self-similar fragments.
This results in clone pairs being reported as maximal although both frag-
ments are extensible. Because there is no satisfactory solution to this prob-
lem yet, this thesis will use the definition as it has been presented.

Concerning the extraction of clone pairs from the suffix tree, right-extensi-
bility does not need to be explicitly checked if only fragments are combined
that stem from leaves which are reached by different edges from an internal
node. According to the definition of suffix trees, no pair of outgoing edges
from that node can share the first character (or token) of their label. As
this token is the first to the right and different for both fragments, the clone
pair cannot be right-extensible. If however clone pairs were formed by leaves
being reached from the same outgoing edge, the respective fragments must
by definition be right-extensible. At least by the tokens of the outgoing edge
which they share.

Left-extensibility can unfortunately not directly be read from the suffix tree
and must be tested upon combining two fragments. If the resulting clone pair
is left-extensible it is discarded, otherwise it is reported as being maximal.

Having found two leaf nodes n1 and n2 that share a sequence of tokens
which is neither left-extensible nor right-extensible, a clone pair can be built
as follows. The value of file1 equals the file information contained in the
label of the parent edge of n1. The indices start1 and end1 can be obtained
by considering the indices of n1’s parent edge and the path length of node
n1. The same applies to the second fragment using the node n2. The clone
pair’s type is determined later in a post processing step. Important is, that
all values can be determined in constant time.

Summing up, fragments relate to leaf nodes and clone pairs to internal nodes
of the suffix tree. Indices for these can be calculated in constant time. Figure
6 shows a maximal match in a sample suffix tree.
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a

c$ bac$c$bac$

ba
$c$

Figure 6 – Maximal match in the suffix tree for the string babac$.
The black external nodes represent the fragments of the clone pair.
The path from the root to the black internal node shows the cloned
sequence of characters being ba. Note, that the path with label a

of the second internal node is not a maximal match, because a is
left-extensible.

2.5 Clone Detection Using clones

Different approaches to clone detection have been briefly outlined in Sec-
tion 1.2. This section explains the process of token-based clone detection
as implemented in the tool clones from the project Bauhaus. Due to the
underlying task of this thesis, the usage of clones and the adaptation of
clones mechanisms to multi-revision clone detection is compulsory.

The tool clones runs five major phases to detect clones in a given program.
First, all source files are parsed into one large token string, then the suffix
tree is built for that string. Within the suffix tree, Baker’s algorithm [Bak97]
is used for finding maximal matches which are filtered afterwards in order
to discard uninteresting clone pairs. The last step consists of outputting the
resulting set of clone pairs in the desired format.

2.5.1 Tokenizing

This is the first step in token-based clone detection and common to every
compiler and every program that analyzes source code. All files that belong
to the system in which clones are to be searched are collected and scanned by
a lexer into a string of tokens. The token strings of all files are concatenated
together to form a single string. This allows building a single suffix tree
which contains the information about all suffixes of all files. If a single suffix
tree was used for each file, no clone pairs could be found where the fragments
stem from different files. A single tree for all files ensures that clone pairs can
be found across files. Before concatenation, a unique file terminator token
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is appended to the token string of each file. This ensures, that no fragments
that cross file boundaries are part of clone pairs. The concatenated string is
saved in a single token table that maps an index to information about the
token at that position.

2.5.2 Suffix Tree Construction

After creating the token string of all tokens from the source code, the suffix
tree for this string is built. Depending on the application, two construction
methods for the suffix tree are available. The first construction algorithm
is an implementation of Ukkonen’s algorithm [Ukk95], which directly builds
the suffix tree for the token string. Although the algorithm has the benefit
of being on-line, this is not important for clones, because the complete string
for which the suffix tree is built is available before starting the suffix tree
construction.

Another suffix tree constructor is available which implements the algorithm
presented by Baker [Bak97]. The token string is first converted into a pa-
rameterized token string. Based on the parameterized token string, the
constructor builds a parameterized suffix tree. This constructor is used
whenever parameterized clone detection is requested, because the Ukkonen
constructor is not able to build a parameterized suffix tree.

2.5.3 Extraction of Longest Matches (Baker)

In the third step, Baker’s algorithm pdup [Bak97] for extracting longest
matches from the suffix tree is used to find potential clone pairs. To reduce
the number of clone pairs that need to be processed in the following phases,
some potential clone pairs can already be discarded. The most important
criteria for discarding clones is the minimum length they need to have. The
algorithm is already aware of this criteria and drops clone pairs which are
not long enough to be reported. The result is a list of clone pairs, that all
conform to the minimum length.

2.5.4 Filtering

Though a lot of clone pairs have already been dropped during the extraction
of longest matches, the list of pairs most probably contains a lot of pairs
that are of no interest (i.e. overlapping pairs or pairs which span more than
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one syntactic unit as shown in Figure 7). To improve the result, several
filtering phases are run.

The first phase determines the type of each clone pair. Due to the nature of
pdup, only type-1 and type-2 clone pairs are extracted from the suffix tree.
For each clone pair, the fragment’s identifier tokens are checked for equality.
If a discrepancy is found, the pair is of type 2, otherwise of type 1.

Other filters include cutting clone pairs down to syntactic units, merging
type-1 or type-2 clone pairs into type-3 pairs or removing overlapping clone
pairs. Depending on the filters that are applied, this step is quite time
intensive. It is not unusual, that a filter has a worst-case quadratic time
complexity as every clone pair needs to be compared to every other clone
pair.

2.5.5 Output

The last step consists of formatting the clone pairs and outputting them in
the desired format. The information about the location of fragments needs
to be converted from token indices into lines, to make the result readable
for the user. Depending on the required format, each clone pair is emitted
with the location of the two fragments and its type as well as its length.

1 a = a + 1;

2 }

3 }

4

5 void do_it ()

6 {

(a) fragmentA

1 b = b + 1;

2 }

3 }

4

5 void undo_it ()

6 {

(b) fragmentB

Figure 7 – A clone pair that is not very helpful as the token
sequence of the fragments spans more than one syntactic unit.
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3 Incremental Clone Detection

This section describes the Incremental Detection Algorithm IDA and con-
cepts relevant to it. The motivation for IDA is to have an algorithm that
analyzes multiple revisions of a program faster than the separate applica-
tion of the tool clones on each revision. The motivation is based on the
assumption that only a comparatively small amount of files change per re-
vision, causing a lot of work to be done redundantly when rerunning every
part of clones. Therefore, internal results are not discarded, but reused and
modified according to the files that changed for the respective revision.

The information which files have changed between any two consecutive re-
visions is given to IDA together with the source code of each revision that
is to be analyzed. IDA itself runs several phases for every revision, which
consist of preparations, processing changes and a post processing stage.

To accelerate the detection of multiple revisions, the analysis of revisioni

must consider and reuse intermediate results of revisioni−1 as much as pos-
sible. The intermediate results which can be reused are the data that are
created during the clone detection process. A lot of this data are not directly
part of the token-based clone detection process. Though being also reused
as far as possible, they are not mentioned here due to their technical nature.

Answering Question 1, the data structures that are important for the clone
detection process and which can potentially be reused are the token table,
the suffix tree and the set of clone pairs. The time needed to create these
takes a considerable amount of time of the whole detection process. For
this reason, they are not discarded after the analysis of a revision, but kept
in memory and reused for the next revision. However, some effort must be
spent to make these data structures suitable for multi-revision detection.

Sections 3.1 and 3.2 answer Question 2 by explaining in which way clones’
data structures must be modified in order to be reused. Section 3.3 shows
how the incremental algorithm integrates into the analysis of multiple revi-
sions. Sections 3.4 to 3.6 explain the different phases of which IDA consists.

3.1 Multiple Token Tables

The first data structure which is to be reused is the token table. As files are
added and deleted from revision to revision, old tokens that are not needed
anymore can be discarded and new tokens have to be read for new files. If
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a single table is used, problems arise when files change and the token tables
for the respective files need to be updated to conform to the new versions.

Assuming a file is deleted, its tokens have to be removed at some point from
the token table, because otherwise the algorithm will sooner or later run
into memory shortage. Recalling that the edges of the suffix tree are labeled
by the start and end index of a substring, one has to ensure, that no label
of the suffix tree references the part of the token table where tokens were
discarded. This would require checking the complete suffix tree for dangling
indices upon deleting a file. Even more critical, new indices that denote the
same substring have to be found for every edge with invalid indices.

Apart from invalid indices, there is the problem of growing holes inside the
token table, caused by files that have been deleted. One could try to fit
new files into these spaces and fill the holes, but whatever token table man-
agement is used, the management overhead will most likely be intolerable.
More complex methods, that remap indices to valid locations upon request-
ing a token are of no use, because accessing a token from the token table is
the most common action in the implementation and should therefore be as
fast as possible. Any yet so small delay in accessing a token will add up to
a significant amount.

These issues are the reason for IDA to not hold a single token table, but
rather have one token table for every file. When a file is deleted, the token
table for the respective file can just be dropped after the suffix tree has been
updated. When a file is added, a new token table is created. The location of
a token must therefore be extended to a tuple (file, index) instead of just
having a single index. file selects the token table for the file in which the
token is contained, and index denotes the position of the token inside that
file. Section 3.2.2 describes how dangling references caused by the deletion
of files are avoided.

3.2 Generalized Suffix Tree

In addition to changing the token tables when files have changed, suffixes
of these files also have to be added and deleted from the suffix tree. This
causes the structure of the tree to change in order to conform to the new
token sequences of the changed files. Assuming concatenated token strings
and a suffix tree for the complete string as practiced in clones, every external
edge’s label spans all tokens to the very end of the token string including
the tokens of all files following the edge’s file. If the token string becomes
shorter (or longer), the label’s end index of every external edge would need
to be changed. Many parts of the suffix tree have to be modified that are in
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no way related to the file which has changed. It is desirable to only modify
the edges related to the changed file and leave all other edges untouched.

To solve this problem, IDA uses a generalized suffix tree [GLS92] that repre-
sents suffixes of multiple strings instead of just a single string. The advan-
tage of a generalized suffix tree is, that algorithms exist to efficiently insert
or remove a string from the underlying set of strings and update the tree
accordingly by only modifying the edges relevant for the respective file.

A generalized suffix tree represents all suffixes of all strings in a set of strings
∆ = {X1, X2, . . . , Xn}. It can be seen as the superimposition of the indi-
vidual suffix trees of the strings in ∆. Whenever parts of edge labels are
equal, they can be unified into a single edge, now serving for two or more
strings from ∆. However, the tuples that label the edges must be expanded,
because more than one string contributes to labeling the edges. The tuple
(i, j) which referred to start and end position inside the string is extended
to a triple also giving information to which string the indices i and j refer.
An edge label is now a triple (X, i, j), where i and j denote the start and
end position of a substring in X. A sample generalized suffix tree for the set
of strings ∆ = {abc$1, bab$2, bac$3} is given in Figure 8. It should be kept
in mind, that every string Xi in ∆ has a unique endmarker $i, which does
not match any other character or endmarker.

2b$ 3c$1c$

1c$3c$

$ 1 $ 3

2$

$ 1 $ 3

2$

2$

cba

ab

Figure 8 – Generalized suffix tree for the set of strings ∆ =
{abc$1, bab$2, bac$3}.

It is worth noting, that the generalized suffix tree for ∆ = {X1, X2, . . . , Xn}
is isomorphic to the suffix tree which can be constructed from the concate-
nated string X1X2 . . . Xn.
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Furthermore an important property of generalized suffix trees is, that suffix
links always point to nodes that represent a suffix of the same string. By
following the suffix links until reaching the root node, all suffixes of a given
string can be retrieved and no nodes representing suffixes from other strings
are traversed.

Figure 9 compares a conventional suffix tree for the string abc$1bab$2 to a
generalized suffix tree for ∆ = {abc$1, bab$2}. They differ in the labels of
the external edges. If the substring bab$2 was removed from the conven-
tional suffix tree, every external edge would have to be relabeled. In the
generalized suffix tree, only those edges whose labels end on $2 would need
to be modified.

2$  bab$1

c$  bab$1 2

$2

$2 c$  bab$1 2$2ab$ 2c$  bab$1 2

b ab

(a) Conventional suffix tree.

$2

$2 $2ab$ 2

1$

1c$

b ab
1c$

1c$

(b) Generalized suffix tree.

Figure 9 – Comparison of a conventional suffix tree for the string
abc$1bab$2 to a generalized suffix tree with ∆ = {abc$1, bab$2}.

The remaining question is, which syntactic units of the analyzed program-
ming language are to be represented by the strings in ∆. Considering the
relation between the suffix tree and clone pairs, one can notice, that the

26



maximal length of a clone pair is limited by the length of a string in ∆. If
the strings in ∆ would represent single statements of the program, no clone
pairs could be found which are longer than a single statement, which is
undesirable. Making strings represent syntactic blocks like functions would
require understanding the syntactic structure of the program. This is how-
ever not given, as token-based clone detection does not give any meaning to
the sequence of tokens. Furthermore, clone pairs that span more than one
syntactic unit might be of interest but would not be detected.

The choice was made to make each string in ∆ represent the token string of
a single file. This allows removing or adding a single string to ∆ for a single
changed file. Furthermore, fragments can not cross file boundaries due to
the length limitation mentioned above.

One extension is made to the generalized suffix tree that is specific for IDA.
Every external node of the suffix tree stores references to the clone pairs of
which a fragment relates to this node. On the other hand, every clone pair
maintains links to the two nodes to which its fragments correspond. These
bi-directional links are exploited whenever the structure of the suffix tree is
modified and IDA requests all fragments relating to an external node. When
external nodes are removed from the suffix tree due to the corresponding
suffixes being deleted, fast access to the clone pairs is required, because
these need to be changed. Note, that each clone pair is linked to exactly
two nodes, whereas each node can be linked to an arbitrary number of clone
pairs. Figure 10 shows how pairs and external nodes are linked.

u

v w

clone_pair

clone_pair

...

...

i

i+1

Figure 10 – Schematic view of bi-directional links (dotted ar-
rows) between external nodes and the fragments of clone pairs.
clone pairi has one fragment related to node u and the other frag-
ment related to node v. Likewise, clone pairi+1’s fragments relate
to nodes v and w.
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3.2.1 Tree Construction

Unfortunately, the construction methods for suffix trees that are imple-
mented in clones, are not flexible enough to allow for fast insertion and
deletion of strings into a generalized suffix tree. IDA implements unpa-
rameterized clone detection, because the impact of adding or removing a
parameterized string from a parameterized generalized suffix tree has not
been evaluated within this thesis. This makes Baker’s constructor for pa-
rameterized suffix trees unusable for IDA. The constructor that implements
Ukkonen’s algorithm is also not usable, as it processes a single string on-
line from its first to its last character. The benefit of being on-line is not
required in our application, as parts of the string do change after they have
been processed once.

Instead, IDA’s tree construction is based on McCreight’s algorithm [McC76].
McCreight was the first to give a comparatively simple algorithm for con-
structing a suffix tree in linear time. In contrast to Ukkonen’s algorithm,
suffixes are added from longest to shortest to the tree. While construct-
ing the tree, suffix links are created and exploited in later iterations. The
drawback of McCreight’s algorithm is, that it operates “backwards” start-
ing with the longest suffix. This means the whole string has to be known
upon starting the algorithm. Nonetheless, this method is used by IDA to
construct and modify the suffix tree. There is no problem in starting with
the longest suffix, because the program’s source code is completely available
upon starting the clone detection. Furthermore, McCreight’s algorithm can
easily be applied to generalized suffix trees.

However, IDA does not follow McCreight’s original paper, but a simplified
version which is described by Amir et al. [AFG+93]. Amir et al. present
two procedures. One of them inserts a suffix of a string into the (general-
ized) suffix tree and the other one accordingly deletes a suffix from the tree.
Assuming that all suffixes of a string are added or deleted (and not a single
one on its own), both procedures take constant time. The assumption is
valid for IDA, because whenever a file is changed, all its suffixes are added
or deleted. A string of length m, which can be seen as a file with m tokens,
has m suffixes and can therefore be added or deleted from the suffix tree
and its underlying set of strings ∆ in linear time O(m). Like with other
constructors, the generalized suffix tree is augmented with suffix links. A
brief explanation of both procedures is given. A detailed description and a
proof why they require linear time can be found in [AFG+93].

Inserting a Suffix: Inserting a suffix of a string into the generalized suffix
tree is done by creating a new external node representing that suffix together
with a new external edge. The challenge is to identify the location where the
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new edge is to be appended. This is done by following the edges away from
the root as long as the tokens represented by the edge labels correspond to
the tokens of the suffix. There is only one such path, because the edge labels
of sibling edges all start with a different token. When a discrepancy is found
between the token referred to by an edge label and the corresponding token
of the suffix, the location for inserting the new external edge and node has
been found.

If the discrepancy was caused by the first token of an edge, the new external
edge and its end node can be appended to the parent node of that edge.
Otherwise, the existing edge needs to be split by inserting a new internal
node to which the new external edge must be appended. The new external
edge label refers to the remaining tokens of the suffix for which no match
has been found. Figure 11 shows both situations.

u

ab

c

d$g ef

v

(a) Appending to an existing node.

e

f

u

ab

c

g

$

v

(b) Splitting an edge.

Figure 11 – Appending a new external node and edge to the suffix
tree. Assuming the suffix to be added is abcd$, the new edge and
node (dashed) can be appended to node u (a). If the suffix is
abce$, the edge from node u to v needs to be split. The new edge
is appended to the newly created internal node (b).

During the process of inserting suffixes, suffix links are created. By using
these links, the search does not need to be started from the root node for
each remaining suffix. Instead, an internal nodes serves as the starting
point for the search to avoid redundant calculations and ensure linear time
consumption for inserting all suffixes of a given string.
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Deleting a Suffix: Deleting a suffix is similar to adding one. It implies
deleting an existing external node and its parent edge. Finding the node
that is to be deleted works analogous to finding the location where a new
node is to be appended. Starting from the root, edges are traversed as long
as the tokens referenced by their labels equal the tokens from the suffix that
is to be deleted. The search ends at the external node that represents the
suffix. Again, two situations can arise. If the parent node of the external
node is the start node of more than two edges, the external node and its
external parent edge can be removed. If the external edge has only one
sibling, the sibling and the parent edge of its start node have to be merged
after removing the external edge. This is required, because no node except
for the root can be the start node of only one edge.

Merging two edges is the opposite of splitting them. Coming back to Figure
11 and assuming the dashed parts to be deleted, subfigure (a) requires no
further modification of the tree. When the dashed edge is removed from
subfigure (b), its start node remains the start node of only one other edge.
This requires merging the edges from u to the start node and from the start
node to v.

IDA always deletes suffixes from longest to shortest. If the external node
representing the longest suffix has been found, any other node representing
a shorter suffix of the same string can be retrieved by following the suffix
links. This means, every following suffix can be deleted in constant time.

3.2.2 Updating Labels

There is a serious problem in modifying generalized suffix trees after their
initial construction. One should recall that every edge is labeled by a triple
consisting of file, start and end referring to a substring of tokens. Consid-
ering this, deleting files might result in edges, whose labels point to files
which are not existent any more. A solution to this problem is described by
Ferragina et al. [FGM97]. They make the following statement about labels:

“[. . . ] a label (X, i, j) is consistent if and only if it refers to a
string currently in ∆.” [FGM97]

Using this definition, every label of a generalized suffix tree must be consis-
tent at any point of time. Ferragina et al. identify three basic operations
that modify the structure of the suffix tree.
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• Inserting a new external node and edge into the tree. The start node
of the new edge already existed before the insertion. This operation
appears in conjunction with the insertion of a string into ∆ (see Figure
11a).

• Inserting a new external node and edge into the tree. The start node
of the new edge did not exist before the insertion, but was created
by splitting an existing edge. This operation is also related to the
insertion of a string into ∆ (see Figure 11b).

• Deleting an external node and edge due to the removal of a string from
∆. If the start node of the edge is the start node of only one other
edge, the other edge and the nodes parent edge have to be merged.

The solution presented to keep suffix tree labels consistent under these
three operations requires maintaining bi-directional links between edges and
nodes. Using these links, the labels that need to be modified when one of
these operations is carried out, can be identified in constant time. Relabel-
ing an edge implies changing the file to which the label refers. This most
likely leads to changing the start and end index of the label, because the
actual sequence of tokens which is referred to by the label must not change.

Ferragina et al. introduce three conditions which must hold at any point of
time in order to ensure, that relabeling an edge can happen in constant time.
Satisfying these conditions might require relabeling edges although nothing
is deleted from the tree. As the tree can be kept consistent in constant
time for an edge, keeping the tree consistent when removing a string from
∆ requires time linear to the length of that string. More details on how
exactly links are built and when edges need to be relabeled can be found in
[FGM97].

3.3 Integrating IDA

After Sections 3.1 and 3.2 answered Question 2, the remaining sections
present the incremental clone detection algorithm and answer Question 3.

Before the individual phases of IDA are described, a general view is given of
how IDA integrates into multi-revision clone detection. Recalling Figure 1,
one can observe that the same processing steps are done for each revision.
The analysis of each revision is independent of any other revision. Figure
12 shows how IDA integrates into the analysis of two consecutive revisions.

The intermediate results from revisioni are the tokens stored in token tables,
the suffix tree and the clone pairs. These are given to IDA as input together
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Figure 12 – Integration of IDA into the analysis of two consecutive
revisions. Arrows indicate input and output of IDA.

with the files that changed from revisioni to revisioni+1. Depending on
the changes of the source files, the data structures are modified in order to
conform to the source code of revisioni+1. Again, they are kept in memory
in order to be reused for the next revision.

3.4 Preparations

After describing how IDA integrates into clone detection, the following sec-
tions will explain its internal processing. Like with most other algorithms,
certain preparations have to be made before the main part of IDA can ex-
ecute. A distinction has to be made between preparations that have to be
done only once and others which have to be done for every new revision
which is analyzed.

Initial preparations are those, that have to be done only once for every
execution of IDA. Analogous to most other programs, IDA needs to set up
various data structures which are used during the clone detection process.
This is not further described here, because this is purely technical and not
part of the algorithm itself.

IDA starts by reading the directory that contains the individual revisions.
It assumes the first directory in alphanumerical order to be the first revision
of the program which is analyzed. As there are no intermediate results
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to be used, everything has to be created from scratch. IDA processes the
first revision in the conventional way as implemented in the tool clones. A
description of which steps are performed is given in section 2.5.

In contrast to preparations that have to be done only once, there are certain
things that must be done every time before a new revision is analyzed. These
mainly consist of technical issues like resetting certain data structures.

3.5 Processing Changes

After doing the preparations, IDA is ready to process all the files that
have changed. The overall procedure is rather simple and consists of go-
ing through the list of changed files. Depending on the type of the change,
the token tables, the suffix tree and the set of clone pairs are modified.
Adding or deleting a file are the simple cases, processing a modified file is
more complex. The following sections describe how the different types of
changes are processed.

3.5.1 Processing a New File

If a new file was added in the current revision, IDA constructs a new token
table for that file and calls the lexer in order to fill the table with the file’s
tokens. After that, the file’s suffixes are added to the suffix tree from longest
to shortest. For every suffix of the file, one new external edge is created
representing that suffix. This might require splitting an existing edge and
relabeling edges to allow keeping edge labels consistent. For details on how
to add or delete suffixes, edges and nodes from the suffix tree see [AFG+93]
and [McC76].

Every edge in the suffix tree carries a tag that indicates the status of the edge.
The status can be either new if the edge has been added to the suffix tree,
reused if it was reused (see Section 3.5.3) or none if the edge has not been
modified. Upon adding a file, all new edges are tagged as being new, which
is important when rerunning Baker’s algorithm to retrieve clone pairs from
the suffix tree (3.6.1). If required, other edges are relabeled as described in
section 3.2.2. The generalized suffix tree for ∆ = {abc$1, bab$2, bac$3} after
the insertion of bac$3 is shown in Figure 13. Dashed edges are the ones
tagged as new.
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Figure 13 – Generalized suffix tree for ∆ = {abc$1, bab$2, bac$3}.
Dashed edges and their end nodes relate to the string bac$3. Dot-
ted arrows indicate suffix links connecting the external nodes rep-
resenting the suffixes of bac$3. Note, that not all suffix links are
drawn to limit the figures complexity.

3.5.2 Processing a Deleted File

Like addition, deletion of a file is rather simple. Starting with the longest
suffix, the external edge and its end node that represents that suffix are
searched and deleted. Assuming the string bac$3 is deleted from the tree
in Figure 13, the end node representing the longest suffix is the one whose
path is bac$3. Deleting an edge might require merging or relabeling other
edges as described in 3.2.2. The nice thing about deletion is, that starting
from the end node of the deleted edge, suffix links can be followed to collect
all edges which represent suffixes from the file that is deleted. This can also
be observed in Figure 13. The suffix links that can be followed are drawn
as dotted arrows. As every node carries a reference to its parent edge, the
edges which have to be removed can easily be obtained.

In addition, all clone pairs from which at least one fragment is contained in
the deleted file, are removed because they do not exist any longer. Finally,
the token table for the file that is deleted can be disposed, as the tokens are
not needed anymore.
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3.5.3 Processing a Modified File

In comparison to addition or deletion, modifying a file is by far more com-
plex. Basically, a modification of a file is processed by removing the old
version and adding the new version of the file to the suffix tree. There
are however some particularities and some thought should be given of what
happens to the suffix tree upon modification of a file. Assuming the content
of the file does not change at all, every external edge representing a suffix
of the old version of the file would be deleted and the same edge inserted
afterwards for the new version of the file. The only difference would be that
the labels of the external edges now refer to the new, instead of to the old
version of the file. Though inserting and deleting edges is relatively fast, a
lot of work has to be done which is actually not needed. To overcome this
problem, the concept of reusing edges is introduced.

Starting like addition, a new token table is created for the new version of
the file and the tokens of the file read and inserted into the table. Starting
with the longest, suffixes are inserted into the suffix tree. However, there
is a big difference in comparison to the insertion of a new file. Whenever
an external edge is to be inserted into the suffix tree, its potential siblings
are compared to the edge. If there is any external sibling edge label that
references the same sequence of tokens as the new edge would do (except the
file terminator token which is different for every file) and whose label points
to the old version of the file, it can be reused. This prevents any structural
modification of the suffix tree. The edges label is made to reference the
new version of the file and the edge is tagged as reused. This can save huge
amounts of calculations which would otherwise be needed in order to modify
the suffix tree. Figure 14 illustrates a situation where an edge can be reused.

If a reusable edge is found for a particular suffix, there needs to exist a
reusable edge for any remaining suffix which is to be inserted into the tree.
Once more, the suffix links can be traversed starting from the end node of
the reusable edge until the root node is found. Every parent edge of the
nodes that are traversed can be reused and no more modification has to
be done to the tree except for changing file references in edge labels. For
example, Table 2 shows the old and new version of the tokens of a file where
the second token with index 1 has been changed from a to b. The suffixes
[i, 3] with 2 ≤ i ≤ 3 do not require a structural modification of the suffix
tree, because these suffixes already existed in the old version of the file. Only
the labels of the edges have to be adapted.
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u

(1,5,5)

v
(3,7,9) (1,2,3)

(2,1,4)

(4,7,9)

Figure 14 – A situation where an edge can be reused. The index
of the old version of the file is 3, the new version has index 4. If the
new external edge with label (4, 7, 9) (dashed) is to be appended
to node u, the edge from u to v can be reused by making the label
reference file 4 instead of 3. This assumes, that the tokens 7 and 8
in the old version of the file equal tokens 7 and 8 in the new version
and that token at index 9 is a file terminator token, which is the
case as every external edge needs to end in a file terminator token.

Index i 0 1 2 3

Old version b a c $3

New version b b c $3

Table 2 – The old and new version of a token string. The token
at index 1 has been changed from a to b.
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One might already have recognized, that the time that can be saved heavily
depends on the location of the tokens which have changed from the old to
the new version. Due to the nature of a suffix tree, the closer a change is to
the end of the string, the less there is to gain from reusing edges. The token
at position i belongs to i + 1 suffixes. If that token is changed, m − (i + 1)
edges can be reused where m denotes the length of the token string. The
closer i gets to m, the less there is to reuse.

After inserting the new version of the file, the suffixes of the old version
of the file need to be removed from the tree by deleting the corresponding
external edges. The edges are once more traversed by following the suffix
links that connect the end node of these edges. Whenever an edge is removed
from the tree, the consistency of the tree must be preserved. This is done by
relabeling edges as described in section 3.2.2. Furthermore, deleting an edge
might require merging two edges if the deleted edge had only one sibling. For
any edge deleted this way, the clone pairs related to this edge are removed as
the fragment represented by the edge’s end node does not exist any longer.
As soon as an edge tagged as reused is found, the procedure can terminate
because any following edge has also been reused as described earlier.

Figure 15 shows the suffix tree for ∆ = {abc$1, bab$2, bbc$3} after changing
file bac$3 to bbc$3. Two edges can be reused, because the respective suffixes
did not change. Note how the suffix links connect all nodes representing
suffixes of the string bbc$3 and allow for easy traversal of these nodes.

3.6 Post Processing

When all changed files have been processed, the token tables and the suffix
tree conform with the new revision of the program analyzed. However, the
set of clone pairs does not. To make the clone pairs comply with the new
revision, two post processing steps are required.

3.6.1 Searching New Clones

When new files have been added or any file has been modified, the suffix tree
contains edges tagged as new. As the end nodes of these edges might relate
to fragments which form new clone pairs, these pairs have to be retrieved. It
is important to note that new clone pairs cannot only be formed among new
edges and their end nodes. Any new end node might also form a clone pair
with an end node of an edge that is not tagged as new. Therefore, the huge
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Figure 15 – Generalized suffix tree for ∆ = {abc$1, bab$2, bbc$3}
after file bac$3 has been modified to bbc$3. Dashed edges show the
edges that were reused, because the suffixes c$3 and $3, represented
by the edge’s end nodes, did not change. Dotted arrows indicate
suffix links connecting the external nodes representing the suffixes
of bbc$3. Note, that not all suffix links are drawn to limit the
figures complexity.

amount of possible combinations inhibits a specialized search for potential
clone partners for every new edge.

Instead, new clone pairs are retrieved by rerunning Baker’s algorithm on
the whole tree. But in comparison to its original version, the algorithm now
only reports clone pairs where at least one of the fragments relates to the
end node of an external edge tagged as new. This modification ensures,
that no clone pairs are reported which are not related to at least one new
node and which therefore have been extracted before. The result is a set
of potentially new clone pairs of which at least one fragment did not exist
previously.

3.6.2 Filtering

Analogous to processing the first revision, the resulting set of potentially
new clone pairs is filtered to match the criteria specified by the user. Pairs
that do not conform to the filter criteria are dropped and not considered
any more.

Apart from filtering the new clone pairs, the set of existing clone pairs has
to be reviewed. All these pairs have to be checked for left-extensibility
once more, because changing files and modifying the suffix tree makes the
initial left-extensibility check invalid. Any clone pair might have become
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left-extensible due to a changed token sequence in changed files. If a pair is
found to be left-extensible, it is deleted, because of not being maximal any
longer.

The new clone pairs which have not been discarded by the filter are inte-
grated into the set of existing clone pairs and the result represents all clone
pairs which exist in the revision that is currently analyzed.

Finally, a number of clean-up actions are performed, which are not described
here in detail due to their technical nature. It is worth noting, that all data
structures now completely conform to the current revision which has just
been analyzed. The token tables, the suffix tree and the set of clone pairs are
exactly complying to that revision and no relics from previous revisions exist.
After everything is done, IDA processes the next revision or terminates if
no more revisions are to be analyzed.
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4 Tracing

The evolution of clones has an important role in understanding and estimat-
ing the impact of clones on a software system [HK08]. During the last years,
several approaches have been presented to analyze clones over more than one
revision of a program [ACPM01, AVMP02, DER07, KSNM05, KN05, Kri07].
Applications range from simple quantitative measurements to more complex
questions directed at the relation between clone pairs or classes, i.e. consis-
tent or inconsistent changes of fragments within a class or a pair. A short
summary is given of how clones are traced in different works.

Antoniol et al. presented a method to analyze the evolution of clones quan-
titatively over multiple revisions of a program [ACPM01, AVMP02]. The
average amount of clones per function is measured for different revisions
of the program. Based on the results, a model is created to predict how
the clones further evolve. Clones of function granularity are detected by
comparing functions according to their metrics. However, this approach
just considered the total amount of clones and does not create a mapping
between clones of different revisions.

Kim et al. studied clone genealogies in 2005 [KSNM05, KN05]. By tracing
clone classes over multiple revisions, a genealogy for each of those classes can
be constructed. The matching between clones of different revisions is done
by a heuristic function which measures the location overlapping of both
fragments. The more the locations of a cloned fragment in one revision
overlaps with a cloned fragment from another revision, the more likely both
fragments are the same clone. Furthermore, Kim et al. define different
patterns to describe the evolution of clone classes.

A study of consistent and inconsistent changes to clones was done by Krinke
[Kri07]. A format for describing the location and extent of a code change
from one revision to the next is presented. All changes in the source text of
one revision to the next are expressed in that format. Each of these changes
is analyzed, whether its location is embedded or at least overlaps with the
code fragment of a clone. Based on the outcome, information about whether
clone changes are consistent or inconsistent can be gained.

Duala-Ekoko and Robillard introduced Clone Region Descriptors (CRDs)
[DER07]. A CRD is an abstract representation of the location of a clone
in the source code. Looking at the abstract syntax tree of any revision of
the program, a search routine tries to retrieve the clone based on the CRD.
The CRD stores a clone’s location not by absolute information about source
code lines which the clone spans, but rather by naming syntactic structures
which contain the clone. This allows finding clones although they might
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have moved due to the insertion or deletion of source code lines from the
respective file.

Balint et al. presented a visualization method for the evolution of clone
classes [BMG06]. Their Clone Evolution View shows the timeline for a
single class and enriches it with information about the date and authors
that changed source code lines of the clones. They retrieve data about the
changes made to the clones from the version control system CVS 4.

Running the incremental clone detection algorithm as described in the pre-
vious section still yields independent sets of clone pairs. There is no gain
concerning the mapping between clone pairs of individual revisions in com-
parison to the separate application of clones to each revision. One way to
obtain the mapping is matching clone pairs of different revisions after the
creation of the sets. If a match of two sufficiently similar clone pairs is
found, it is assumed that these pairs are essentially the same. However, this
approach can be very costly for large sets of clone pairs due to the quadratic
nature of the matching phase.

The integration of tracing clone pairs across revisions into IDA is based
on the assumption, that changes of clone pairs can be derived from the
modification of the suffix tree. This reduces the amount of clone pairs that
need to be matched afterwards.

In addition to mapping clone pairs, the change that happened to each pair
is to be reported. Although this could be calculated afterwards by com-
paring each clone pair to its representation in the previous revision, it is
assumed that time can be saved by concluding changes from the suffix tree
modification.

To enable mapping clone pairs on the one and reporting changes on the
other hand, the notation of a clone pair is to be extended. Each clone pair is
assigned a unique ID which allows locating the same clone pair in different
revisions. Furthermore, each clone pair carries a tag which indicates the
changes that happened to the clone pair from the previous to the current
revision.

This section is organized as follows. Section 4.1. describes different changes
that can happen to a clone pair between two revisions. Section 4.2 discusses
why these changes are ambiguous. Section 4.3 outlines how tracing clone
pairs integrates into IDA and how changes to clone pairs are derived from the
suffix tree. Finally, Section 4.4 explains how remaining pairs are matched.

4http://www.nongnu.org/cvs/
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4.1 Changing Clone Pairs

When the source code of a program changes from one revision to the next
due to files that have been changed, clone pairs within these files might also
be affected. Basically, there are three types of changes that can happen to
a clone pair apart from the fact, that a pair can remain unchanged between
two revisions.

A clone pair can be added from one revision to the next. The clone pair that
is found in the current revision did not exist in the previous revision. This
might be due to new files that are added to the program or the modification
of existing files changing the sequence of tokens.

Furthermore, a clone pair can be deleted. The pair existed in the last re-
vision, but cannot be found in the current revision. The deletion of a pair
can be caused by the deletion of a file from the program or a change of the
token sequence.

Beyond addition and deletion, a clone pair can be modified from one revision
to the next. The clone pair existed in the previous and still exists in the
current revision. However, the pair has changed in some way. Three different
types of modifications that can happen to a clone pair are distinguished.
They do not exclude each other, hence they can appear together for a single
clone pair. The three types are the following.

4.1.1 Location Modification

A location modification has happened to a clone pair if the start or end
position of at least one fragment has changed. The location of a fragment is
modified if the value for start or end does not equal the previous value. Note,
that if the location in terms of tokens changed, this does not necessarily
mean, that the location also changed in terms of lines and vice versa. IDA
considers both measurements. If the fragment’s position has changed in
tokens and/or lines, this is seen as a modification of the fragment’s location.
An example for a location modification can be seen in Figure 16.

4.1.2 Type Modification

The next type of modification refers to the type of the clone pair. When the
values of tokens are changed within a fragment, this can lead to a change
of the clone pairs type from type 1 to type 2 or the other way round. A
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1 // Comment

2 do_it ();

3 a = b + c;

4 name = "Peter";

(a) Old version

1 do_it ();

2 a = b + c;

3 name = "Peter";

4 // Comment

(b) New version

Figure 16 – A fragment whose location was modified in terms of
lines. Assuming, that the fragment consists of line 2 to 4 in the
old version, the fragment spans lines 1 to 3 in the new version.
Note that the location has not changed in terms of tokens because
whitespace and comments are not considered to be tokens.

type modification is shown in Figure 17. One of the clone pairs’ fragments
is changed by renaming identifiers. This changes the clone pairs’ type from
1 to 2.

1 do_it ();

2 a = b + c;

3 a = 3 * a;

(a) fragmentA

1 do_it ();

2 a = b + c;

3 a = 3 * a;

(b) Old version
of fragmentB

1 do_it ();

2 a = a + c;

3 a = 3 * b;

(c) New version
of fragmentB

Figure 17 – A clone pair consisting of fragments A and B. When
fragmentB changes to the new version, the type of the clone pair
is modified from 1 to 2.

4.1.3 Structural Modification

The remaining type of modifications is the one that changes the actual
sequence of tokens of a fragment by inserting or deleting tokens. If a clone
pair’s structure is modified, the same tokens are inserted or removed from
both fragments belonging to the clone pair. Regarding other works, this
situation is referred to as a consistent change of the clone pair [ACP07,
KSNM05, Kri07].

Summarizing the changes, the answer to Question 4 is, that a clone pair
can be added, deleted, modified or remain unchanged from one revision to
the next. Modification is further classified into type, location and structural
modification. A simple taxonomy for changes of a clone pair is shown in
Figure 18.
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Type

Deleted

Change

Added Modified

Location Structure

Figure 18 – A simple taxonomy for the changes that can hap-
pen to a clone pair between two revisions. Italic names indicate
modifications that do not exclude each other.

4.2 Ambiguity of Changes

Unfortunately, changes of clone pairs are ambiguous, because the informa-
tion, that the new version of a file is different from the old version does not
yield the exact changes which have been made to the source code. By just
analyzing two snapshots of a file, the actions that have really been performed
by the author who changed the files are still unknown. The author might
have deleted and rewritten everything between the two snapshots available,
and from an external view, no change has occurred to the file. Though being
quite obvious and not much of a problem in this simple case, more complex
scenarios suffer from this lack of information.

Figure 19 shows two snapshots of code where the actual change cannot
be reconstructed. Disregarding whitespace, the author could have inserted
call bar(); at the end of the fragment. On the other hand, the last call
call foo(); could have been deleted and call foo(); and call bar();

been inserted at the beginning. If lines 1 and 2 in the first revision form the
fragment of a clone pair, it cannot be said whether this fragment is spanning
lines 1 and 2 or lines 3 and 4 in the second revision.

1 call_foo ();

2 call_bar ();

3

4 call_foo ();

(a) Revision 1

1 call_foo ();

2 call_bar ();

3 call_foo ();

4 call_bar ();

(b) Revision 2

Figure 19 – Two revisions of source code. What exactly happened
from the first to the second revision can not be reconstructed.
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Considering these ambiguities, any conclusions about clone pair changes are
guesses and reflect the action which has most likely been performed by the
author. The less changes to the source code an action implies, the more
likely has the action been done by the author. Information about how this
is quantified is given in Section 4.4.1. Based on the restricted information
about changes to the source code, the actual action can neither be derived
from suffix tree modifications nor from matching clone pairs afterwards.

4.3 Integration into IDA

This part explains how tracing clone pairs is integrated into IDA. Further-
more, it answers Question 5 by describing how clone pair changes can be
derived during the incremental clone detection. The algorithm presented
in Section 3 is slightly modified to allow tracing clone pairs. Whenever a
clone pair was said to be deleted in Section 3, it rather has its status tag
set to deleted but is not yet removed from the set of clone pairs. This is
needed, because it might later turn out that the clone pair was not deleted
but modified instead. The remaining part of this section describes how each
of IDA’s phases is extended.

After the analysis of the first revision and the creation of the initial set
of clone pairs, each pair is assigned a unique ID. This allows to distinguish
clone pairs based on their ID. Each clone pairs’ status is set to added, because
understandably, it has been detected for the first time in the first revision.

As for the preparations that have to be done for every revision, the set of
clone pairs resulting from the last revision has to be prepared for the analysis
of the current revision. This requires looking at each pair in the set. Every
clone pair that has its status set to deleted is now finally removed from the
list, as it has been reported as deleted in the last revision and is no longer
needed. Every other clone pairs status is set to unchanged which reflects
the default assumption, that nothing has happened at all.

When a deleted file is processed, all clone pairs from which at least one frag-
ment is contained in the file, are tagged as deleted. They are not discarded
yet, because they need to be reported as deleted in the post processing step
for this revision. They are finally disposed in the preparation of the next
revision as mentioned above. Addition of a file does not require looking at
existing clone pairs, because until rerunning the Baker algorithm, no clone
pair can exist of which a fragment is contained in the new file.

In the description of processing modified files, the concept of reusing edges
has been introduced. Reusing an edge is the opportunity to derive changes to
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clone pairs of which one fragment relates to the edge’s end node. Whenever
an edge is reused, it is quite probable that the fragments which relate to the
edge’s end node are unchanged. As no modification has been done to the
suffix tree, the sequence of cloned tokens (the path of the edge’s start node)
is unchanged and the distance from the end of the fragment to the end of
the file remains the same.

However, the fragment might have moved, because tokens have been inserted
before the fragment or tokens are located in different lines now. That is
why for every fragment related to a reused edge’s end node, the location
is checked again in terms of tokens and lines. If values differ, a location
modification is reported for the clone pair. Independent of whether the
location changed, the fragment is made to reference the new version of the
file, because the old version will be deleted later. After inserting the new
version of the file, edges that are not reused and relate to suffixes of the old
version, are removed from the suffix tree. For any edge deleted this way, the
clone pairs related to this edge are marked as deleted.

Unfortunately, any other change to clone pairs cannot easily be concluded
from the suffix tree modification. Minimal changes of fragments can move
the respective nodes to a completely different location in the suffix tree.
Assuming for example, that the first token of the fragments of a pair change,
the new external nodes will be found in a completely different branch of the
suffix tree. Any approaches to detecting these changes from the tree are far
too time consuming, because in the worst case scenario the whole tree would
have to be searched for matching nodes.

Figure 20 shows the generalized suffix tree with ∆ = {cabc$1, bcab$2}, which
was obtained by inserting token c in both files and updating the suffix tree
for ∆ = {abc$1, bab$2} (see Figure 9b). Note how the nodes relevant for
the clone pair ab (respectively cab after the modification) have moved in the
tree.

During the post processing phase, the type of every clone pair which is not
tagged as deleted, is checked. This is done by determining the current type
of the pair and comparing it to its old type. If they are found to be different,
a type modification is reported for that pair.

The remaining problem is, that a lot of clone pairs have been marked as
deleted in the previous steps and many new clone pairs have been detected
while rerunning the Baker algorithm, due to minimal changes in the se-
quence of tokens or location of fragments. Although it is technically correct
to report these pairs as deleted and the new version as added, this does
not reflect the real change that has happened. Instead, it is desirable to
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Figure 20 – Generalized suffix tree with ∆ = {cabc$1, bcab$2}.
The grey colored nodes represent the clone pair with the token
sequence ab as it was in the tree with ∆ = {abc$1, bab$2}. The
structurally modified clone pair cab is represented by the black
colored nodes. The nodes appear in a completely different branch
in the tree, after the token c has been inserted in both files and
the suffix tree has been updated.

have these clone pairs reported as modified instead of the old version being
deleted and the new version added. The following section describes how
IDA matches pairs after changed files have been processed to find likely
modifications.

4.4 Matching Clone Pairs

Matching different source code fragments is not special to IDA and different
approaches exist [KN06]. This section answers Question 6 by describing
how IDA matches clone pairs of two consecutive revisions to find changes.
The starting point are two sets of clone pairs. One contains all clone pairs
from revision i which have been tagged as deleted. The other contains all
clone pairs that have been newly detected in revision i + 1. The problem
which is to be solved, is to find two clone pairs (one from each set) that
are sufficiently similar according to some definition. These are reported as
a modification instead of an addition and a deletion.
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4.4.1 Distance Between Clone Pairs

The problem suggests a function to measure how similar two clone pairs are
and answer the question how likely one pair is the modification of the other.
From now on, this value is referred to as the distance between two clone
pairs. The greater the distance, the less likely is the one pair a modification
of the other. With CP being the set of all clone pairs, the required function
is of type:

distance : CP × CP → N0

Due to the quadratic nature of the matching routine, there is a significant
number of calls to this function for large clone pair sets. This imposes a
strong restriction on the complexity of the function.

Two factors can be identified that contribute to the similarity of clone pairs.
The first factor is the structure of the token sequence represented by the
pairs. If the structure is almost the same, the assumption that one pair is
the modification of the other, is probable. If on the other hand, the token
sequences of both pairs show huge differences, the pairs are less likely a
modification of each other. The second factor is the difference in location of
the clone pair’s fragments. The greater the difference between the locations
of the fragments, the greater the distance between the two pairs. The value
of the distance between two clone pairs is to be obtained by considering the
difference in location and structure of the clone pair’s fragments.

There are a number of methods that can be used for quantifying the dif-
ference between two strings of tokens. An easily applicable function is the
Hamming distance [Ham50], counting the number of positions where the
two strings differ. The problem of the Hamming distance is, that it cannot
recognize shifted characters or tokens in a string. The distance between the
strings abcdef and fabcde has the maximal value 6, although both strings
share a common sequence of 5 characters. This makes the Hamming dis-
tance unusable as it does not represent the distance between clone pairs as
required.

Another measure would be calculating the length of the longest common
subsequence between the two strings. Like the Hamming distance, the result
can easily be influenced by the insertion of single tokens. Given the strings
abcdef and abcgef, the length of the longest common subsequence is 3,
although the strings are identical except for one token.
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A more sophisticated way to express the distance between two strings is the
edit distance, counting the number of basic operations which must be per-
formed to turn one string into the other. The values produced by the method
presented by Levenshtein [Lev66] would much better resemble the structural
differences between the token sequences. Unfortunately, the quadratic time
complexity of the function calculating the Levenshtein distance makes the
method unsuitable for the integration into IDA.

The only structural information about the token sequences, that requires
constant time to be calculated, is the length. Therefore, the difference in
length of the token sequences contributes to the difference of the clone pairs.
Although this serves as a prototypical solution, future research is to be
directed at finding a better solution to measuring the structural difference
between two strings of tokens.

On the other hand, the difference in the fragments’ locations can be re-
trieved in constant time. IDA adds up the difference between the starting
positions of fragmentA and the difference between the starting positions of
fragmentB for both pairs. The more the starting positions of the fragments
differ, the greater is the distance between the two pairs. The difference of
the end positions is not considered, because it is indirectly included by con-
sidering the length of the pairs. All differences are equally weighted, because
it is assumed that the probability that a fragment moves equals the proba-
bility that the clone pair’s length is changed. It is ensured, that the distance
between a clone pair and itself is always 0. The function used by IDA is as
follows.

distance(cp1, cp2) = |startfragmentAcp1

− startfragmentAcp2

|

+ |startfragmentBcp1

− startfragmentBcp2

|

+ |lengthcp1
− lengthcp2

|

It must be mentioned, that this function is by far not optimal. It might
reveal changes although a fragment has been removed and a structurally
completely different fragment just happened to be moved in its place. This
indicates the need for more detailed information about changes. Information
about changes based on files proves to be too imprecise.
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4.4.2 Matching Procedure

For finding best matches between clone pairs, one has to keep in mind, that
a match has to be best in both directions. Assume the following possible
matches among clone pairs:

distance(clone pair0, clone pair2) = 12

distance(clone pair0, clone pair3) = 37

distance(clone pair1, clone pair2) = 2

distance(clone pair1, clone pair3) = 142

If possible matches were processed sequentially, clone pair0 would be re-
ported as a modification of clone pair2, because clone pair2 is the best
match for clone pair0. The match between clone pair1 and clone pair2,
which has a much lower distance, cannot be reported anymore, because
clone pair2 has already been matched with another clone pair. To avoid
such situations, which can lead to obscure modifications of clone pairs, naive
sequential processing cannot be done.

The method to find changed clone pairs processes as follows. First, all po-
tentially deleted clone pairs are sorted into different sets. Each set contains
all clone pairs for a specific combination of the files in which the fragments
appear. A pair with the first fragment in file sample.c and the second frag-
ment in file test.c is put into the set which collects all clones pairs between
the files sample.c and test.c. It is worth recalling, that clone pairs are
normalized and therefore the combination of the first fragment being in file
test.c and the second in sample.c is impossible.

Like the deleted clone pairs, the new clone pairs are sorted into sets in the
same way. This presorting is done to reduce the number of possible matches
between clone pairs. The restriction is, that a change to a clone pair can
only happen if the fragments stay in the same files. A modification of a pair
where at least one fragment has moved to another file is always reported as
a deletion of the old and an addition of the new pair.

After sorting, the sets of new clone pairs are sequentially processed. The
pairs of each set are matched with the pairs of the corresponding set con-
taining the deleted pairs. Matching is done by comparing each new pair to
every old pair and calculating the distance between them. To significantly
reduce the time needed by this step, a threshold has been introduced which

51



represents the maximal distance two clone pairs are allowed to have. If the
distance between any two pairs is above the threshold, the pairs are not
considered as a possible match. The threshold is user-selectable, because no
general statement can be made about how extensive changes of clone pairs
can be for a specific program. A senseful value has to be chosen according
to the nature of the program. For the tests presented in Section 5, a value
of 100 has been chosen. Assume the example matches as given above with
clone pair0 and clone pair1 being potentially deleted and clone pair2 and
clone pair3 being potentially new.

Posterior to calculating the distances, all possible matches are sorted accord-
ing to their distance. The list of possible matches is now as shown below.
One possible match has been dropped, because the distance was above the
threshold. The other matches have been sorted according to their distance.

distance(clone pair1, clone pair2) = 2

distance(clone pair0, clone pair2) = 12

distance(clone pair0, clone pair3) = 37

Starting with the match that has the smallest distance, modifications are
reported. The new clone pair adopts the ID of the old pair and has its status
tag set to modified instead of added. Modifications of the pair are reported
according to the comparison of the old pair to the new pair. If the location
of the new pair is different from the old, a location modification is reported.
If the type differs, a type modification has happened to the pair. Finally,
the sequence of tokens is checked for equality and if not equal, a structural
modification is reported for the pair. Concerning the example, clone pair2

is reported as a modification of clone pair1 and clone pair3 is reported as a
modification of clone pair0.

A single clone pair can be contained in more than one possible match, but
still can be matched only once. To prevent pairs from being matched more
than once, every deleted clone pair that has been matched with a new one is
marked an invalid. Whenever a pair marked as invalid is found, the possible
match is not considered. In the example, the match between clone pair0 and
clone pair2 is not considered, because clone pair2 has already been matched
before. When all clone pair sets have been processed, the overall set of clone
pairs is updated with the new modifications.
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4.5 IDA in Pseudocode

The different phases run by IDA have been explained in the previous sec-
tions. To serve as an overview over the concepts introduced in Sections 3
and 4, a pseudocode version of IDA is given. The pseudocode includes the
actions required to allow tracing clone pairs. This is however only a rough
outline to show the general structure.
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1 Analyze revision 0 in the conventional way;

2

3 for revisions 1 .. n loop

4

5 Discard all deleted clone pairs;

6 Tag remaining clone pairs as unchanged;

7

8 for every changed file loop

9

10 if file is added then

11 Create token table from new file;

12 Insert file into suffix tree;

13

14 elsif file is deleted then

15 Tag all clone pairs related to file as deleted;

16 Delete file from suffix tree;

17 Discard files token table;

18

19 elsif file is modified then

20 Create token table from new version;

21 Insert new version into suffix tree

22 (if possible , reuse edges and derive changes );

23 Delete old version from suffix tree;

24 Discard token table of old version;

25 end if;

26

27 end loop;

28

29 Check left extensibility of existing clone pairs;

30 Find type modification of existing clone pairs;

31 Run Baker to find new clone pairs;

32 Filter new clone pairs;

33

34 // Match clone pairs to find changes

35 Partition deleted and new clone pair into buckets

36 for each bucket

37 Calculate distance for each combination of pairs;

38 Sort possible matches according to their distance;

39 Report changes starting with smallest distance;

40 end loop;

41

42 Integrate new clone pairs;

43 Output list of clone pairs;

44

45 end loop;

Figure 21 – The Incremental Detection Algorithm IDA for ana-
lyzing n + 1 revisions of a program.
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5 Evaluation

In addition to specifying the algorithm, IDA has been implemented in the
tool called iClones (incremental clones). iClones is a derivation from the
tool clones from the project Bauhaus. The infrastructure of clones was
inherited and modified in the appropriate places. Apart from integrating
the multi-revision analysis, the important data structures were modified to
be useful for iClones. The main points were replacing the single token table
with multiple token tables and extending the suffix tree to a generalized
suffix tree.

This section describes the tests, that have been run with iClones in order
to find and answer to Question 7 and show that the tool works as expected.
Section 5.1 describes the test candidates on which iClones was run. Section
5.2 summarizes the tests that were done to check that iClones works as
expected. Section 5.3 answers Question 7 by comparing iClones’ to clones’
performance.

5.1 Test Candidates

For testing the IDA implementation, three candidate programs have been
chosen, which differ significantly in size. The criteria for choosing these
programs were:

• The program’s source code is easy accessible via the world wide web.

• Multiple revisions of the program are available (not only the latest
release).

• The program has a significantly different size than the other test can-
didates.

The following sections describe the three candidates which have been chosen
to compare clones to iClones.

5.1.1 GNU Wget

GNU Wget5, from now on referred to as wget, is a small program for down-
loading files from the world wide web. The program is the smallest among

5http://www.gnu.org/software/wget/
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Index Revision Date

0 wget-1.11 2008-01-26

1 wget-1.11.1 2008-03-24

2 wget-1.11.2 2008-04-30

3 wget-1.11.3 2008-05-29

4 wget-1.11.4 2008-06-29

Table 3 – wget Snapshots.

the three test candidates with approximately 25,000 SLOC6. The revisions
used for testing are shown in Table 3.

5.1.2 GNU Compiler Collection

The middle-sized test candidate is the GNU Compiler Collection7 (gcc).
In addition to the well-known compiler, the collection serves front-ends for
several languages. For testing, only the core part of the collection is used
(gcc-core), which consists of around 1,000,000 SLOC. The gcc source code
is available via repository access or by downloading weekly snapshots. The
revisions used for testing are shown in Table 4.

5.1.3 Linux Kernel

The third and largest among the candidates is the Linux kernel8 (kernel).
The Linux kernel is a freely available operating system kernel, enhanced by
huge amounts of hardware drivers. The kernel size ranges from 3,600,000
to 5,600,000 SLOC. The revisions used for testing are shown in Table 5.

5.1.4 Candidate Size

Table 6 compares the size of the three test candidates measured in SLOC. For
each program, the minimum and the maximum number of SLOC is given.
The difference in size among the test candidates can clearly be observed.

6Throughout this thesis, the size of programs is measured in Source Lines of Code
(SLOC) using the program SLOCCount (http://www.dwheeler.com/sloccount), written
by David A. Wheeler.

7http://gcc.gnu.org/
8http://www.kernel.org
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Index Revision Date

0 gcc-4.4-20080222 2008-02-22

1 gcc-4.4-20080229 2008-02-29

2 gcc-4.4-20080307 2008-03-07

3 gcc-4.4-20080314 2008-03-14

4 gcc-4.4-20080321 2008-03-21

5 gcc-4.4-20080328 2008-03-28

6 gcc-4.4-20080404 2008-04-04

7 gcc-4.4-20080411 2008-04-11

8 gcc-4.4-20080418 2008-04-18

9 gcc-4.4-20080425 2008-04-25

10 gcc-4.4-20080502 2008-05-02

11 gcc-4.4-20080509 2008-05-09

12 gcc-4.4-20080516 2008-05-16

13 gcc-4.4-20080523 2008-05-23

14 gcc-4.4-20080530 2008-05-30

15 gcc-4.4-20080606 2008-06-06

16 gcc-4.4-20080613 2008-06-13

17 gcc-4.4-20080620 2008-06-20

Table 4 – gcc Snapshots.

Looking at Table 7, which shows the candidates’ size in number of source
files, one can observe, that the relation among the test candidates remains
the same. For any of the following observations, only source files of the
candidate programs are considered. Any files belonging for example to the
build system or which are documentation are completely ignored.

5.1.5 Changes per Revision

Reading the descriptions about the three test candidates, one can observe
that there is a significant difference in how and which revisions of each
program are used. Needless to say, that a revision is everything but a
precise measurement of changes to a program’s source code. The amount of
changes that happen between two revisions influences the time needed by
iClones. Therefore, another look must be taken at the three test candidates.
Figure 22 shows the percentage of source files that changed for each revision
of the three programs. Revisions are referred to by an index starting from 0.
The first revision is not shown, due to the fact, that there exists no previous
revision from which files could have changed.
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Index Revision Date

0 linux-2.6.0 2003-12-18

1 linux-2.6.1 2004-01-09

2 linux-2.6.2 2004-02-04

3 linux-2.6.3 2004-02-18

4 linux-2.6.4 2004-03-11

5 linux-2.6.5 2004-04-04

6 linux-2.6.6 2004-05-10

7 linux-2.6.7 2004-06-16

8 linux-2.6.8 2004-08-14

9 linux-2.6.9 2004-10-18

10 linux-2.6.10 2004-12-24

11 linux-2.6.11 2005-03-02

12 linux-2.6.12 2005-06-17

13 linux-2.6.13 2005-08-29

14 linux-2.6.14 2005-10-28

15 linux-2.6.15 2006-01-03

16 linux-2.6.16 2006-03-20

17 linux-2.6.17 2006-06-18

18 linux-2.6.18 2006-09-20

19 linux-2.6.19 2006-11-29

20 linux-2.6.20 2007-02-04

21 linux-2.6.21 2007-04-26

22 linux-2.6.22 2007-07-08

23 linux-2.6.23 2007-10-09

24 linux-2.6.24 2008-01-24

25 linux-2.6.25 2008-04-17

Table 5 – kernel Snapshots.

Candidate Minimum Maximum

wget 26 27

gcc 1,010 1,023

kernel 3,626 5,679

Table 6 – Size of the test candidates given in KSLOC.

Candidate Minimum Maximum

wget 73 73

gcc 1,929 1,978

kernel 12,432 19,464

Table 7 – Size of the test candidates given in number of source
files.
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Figure 22 – Percent of source files that changed per revision.
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It can be seen, that for wget and gcc 5% to 10% of the files change per
revision, although more than a month is between wget’s and just one week
between gcc’s revisions. This indicates, that the time between revisions is
not useful for drawing conclusions about how many files change on average.
In contrast to the other two candidates, the kernel has on average around
30% of its files changed per revision. But the time between revisions is
much longer as with the other programs. Several months pass between the
revisions of the kernel. Note, that these values are given at file granularity.
These numbers are to be kept in mind when drawing conclusions from the
tests which are described in the following.

5.2 Testing Correctness

Before iClones’ performance can be evaluated, its results must be tested
for correctness. Two things must be given for saying that iClones runs as
expected and produces correct results.

• The set of clone pairs, which is reported after each revisions analysis,
must exactly match the set of pairs revealed by clones (Section 5.2.1).

• The mapping of clone pairs between revisions must be correct in the
way that for each clone pair in each revision, the status tag is set
correctly (Section 5.2.2).

5.2.1 Correct Set of Clone Pairs

To show that iClones detects the correct set of clone pairs for each revision,
the pairs have to be compared to a set of reference pairs. These reference
pairs are obtained by running clones on each revision separately. When
the respective pairs are compared to each other, no tolerance is permitted,
because pairs are detected based on the same definition. The test was run in
the following way: The first step consisted of running clones on every single
revision of the three test candidate programs. The resulting clone pair sets
were saved in order to be compared later. Then, iClones was run on the
revisions of each candidate and the resulting set of clone pairs was also saved
for each revision separately. Figure 23 shows how the set of clone pairs were
determined and which of them were compared against each other.

Having available the two clone pair sets for every revision, one obtained by
the conventional approach and the other by iClones, these were compared
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Figure 23 – Structure of how clone pair sets were compared
against each other. Revisions 0 . . . n have once been analyzed in-
dividually by the conventional approach and then by iClones. The
resulting clone pair sets of each revision were checked for equality.

against each other to ensure, that they contain exactly the same clone pairs.
As the sets of pairs are comparatively huge, the comparison was done via a
script, that reads in the set of clone pairs, sorts them and does the actual
comparison. Still, the minimum length of clones had to be chosen differ-
ently for the three candidates, to limit the size of the sets and keep them
manageable for the script. The minimum clone length was set to 20 tokens
for wget, 100 tokens for gcc and 300 tokens for the kernel.

Table 8 shows the sizes of the clone pairs sets that have been checked for
equality for each revision. It was not only checked whether the sets are of
the same size, but also if they contain exactly the same clone pairs. There
is only one value given for the conventional approach and iClones, because
both reported the same number of clone pairs for every single revision. Note,
that these numbers just indicate how many clone pairs have been checked
for equality. Any further interpretation of these numbers among the three
test candidates is not possible, because different parameters to iClones were
used for each test candidate.

The comparison has been done as shown in Figure 23 and iClones reports
the same set of clone pairs for every revision as clones.

5.2.2 Correct Mapping

Knowing that iClones produces the same set of clone pairs is on its own
not enough to say that iClones works correct. What remains to be checked
is that the mapping of clone pairs from one revision to the next is correct.
The mapping is correct, if the status tag for each clone pair resembles the
actions which have been done by the author between two revisions. However,
considering the ambiguity of changes described in Section 4.2, it is impossible
to test whether the mapping is correct or not. Instead, it is checked whether
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Revision 0 1 2 3 4 5 6 7 8

wget 4246 4253 4256 4254 4256 - - - -

gcc 297082 297089 297090 298011 298014 298089 298438 298430 298489

kernel 13362 13341 13881 13485 14013 14238 14040 14328 15022

Revision 9 10 11 12 13 14 15 16 17

gcc 298490 300468 300463 300586 300601 300601 299321 299297 299610

kernel 15477 14749 14309 14451 17728 16710 17361 18421 18538

Revision 18 19 20 21 22 23 24 25

kernel 18769 18017 19558 22002 20881 22220 25178 38142

Table 8 – The number of clone pairs found in every revision of the
candidate programs. clones and iClones report the same number
of pairs for each revision.

the mapping is senseful and reflects the most likely actions performed by the
author.

Analogous to testing the correctness of clone pair sets, one could think of
comparing the mapping to a reference mapping. However, Kim et al. already
stated in their discussion about matching program elements, that

“It is difficult to evaluate matching techniques because there is
no reference data set or archive of editing logs.” [KN06].

Two kinds of tests have been done in order to get an indication that the
mapping produced by iClones is senseful. During development of iClones,
around 50 small artificial test cases have been created to test whether the
program works as expected. Because these test cases were crafted by hand,
the expected result could be manually determined and formulated. The
results produced by iClones were compared to the expected outcome in an
automated way. 15 of these test cases have been used for regression testing
throughout the development phase.

In addition to artificial test cases, some clone pairs from a real world program
were tested. iClones was run on the three test candidate programs and
random samples have been selected from the resulting clone pair sets. These
samples have been manually checked for soundness. The reported changes
of the pair were verified and adjacent clone pairs were checked in order to be
sure, that the reported changes are senseful. The complexity of this process
limited the number of samples that could be checked manually. For every
candidate, five random samples have been chosen, that reported different
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combinations of changes. All samples were found to report a correct and
senseful change of the respective clone pairs.

There is no doubt, that these test do not suffice to show that the mapping
produced by iClones is correct or at least every reported change is senseful.
For further research and drawing conclusions from the mapping, large-scale
automated tests are required. This could either be done by somehow for-
mulating when a change is assumed to be senseful, or by comparing the
resulting mapping to some reference mapping. Kim et al., for example,
published results produced by the Clone Genealogy Extractor [KSNM05].
Problems are that these data are given in a completely different format and
further investigation is needed to say whether the mappings are comparable
at all. The limited tests that have been performed do however indicate that
the mapping produced by iClones is correct and senseful.

5.3 Testing Performance

The main reason for developing IDA and implementing it in iClones is to
reduce the time consumption for clone detection in multiple revisions of a
program. This section answers Question 7 by comparing the performance
of iClones to clones. This is not straightforward, as there are a number of
parameters which influence the performance. The most significant impact
on the performance is the number of clone pairs which are found and need
to be traced. To outline this influence, every test is run twice. Once with a
relatively small and once with a relatively large number of clone pairs com-
pared to the program’s size. The amount of clone pairs found is regulated by
adjusting the minimum length for clone pairs. The same parameters were
used for clones and iClones to make the results comparable.

The following sections present the test results for each of the three test can-
didates. Figures show the time consumption split into the different phases
which are the following:

• Token/Construct: This phase includes tokenizing files which are
added as well as new versions of files which are modified. In addition,
any modification to the suffix tree resulting from the changed files
contributes to this phase.

• Find: Within this phase, Baker’s algorithm is run to extract maximal
matches from the modified suffix tree.

• Filter: Existing and potentially new clone pairs are filtered and those
that do not match the filtering criteria are discarded.
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• Match: Potentially deleted and potentially added clone pairs are
matched in order to find changed clone pairs. This phase does not
appear in the conventional clones approach and is therefore not shown
in the respective figures.

• Other: This phase includes anything not included in any of the other
phases.

5.3.1 wget

This section shows how IDA performs when run on the revisions of wget,
managing just a few (Figure 24) and a large number of clone pairs (Figure
25). It can be seen, that the conventional approach needs around 700ms

for each revision with no significant difference between the revisions. How-
ever, there is a noticeable difference in the time needed by iClones for each
revision. Revision 0 takes more time to analyze in comparison to clones.
On the other hand, every following revision is analyzed much faster. They
only require 15% to 50% of the time needed by clones. Adding up the first
two revisions for both approaches, the sum is already smaller for iClones.
This means as soon as more than one revision is analyzed, iClones needs
less time than clones.

Another aspect one can observe is, that the time needed by iClones to ana-
lyze a single revision is proportional to the percentage of files that changed
from the last revision. Comparing Figures 24b and 25b to Figure 22a, it can
be seen that the pattern among revisions 1 to 4 is the same.
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Figure 24 – Performance comparison of clones and iClones run
on the revisions of wget. The minimum clone length was set to 40
tokens (≈ 4 LOC) resulting in around 600 clone pairs per revision.
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When the number of detected clone pairs is increased, the picture stays
almost the same. Each phase needs a slightly increased amount of time due
to the larger number of clone pairs that are processed. The relations among
the revisions do not change.

One more thought should be given to revision 3 of wget. In this revision,
only two files have been modified. Observing Figures 24b and 25b, the time
required to analyze this revision is almost completely induced by running
Baker’s algorithm to find new clone pairs. All other phases contribute only
marginally to the time consumption. This situation suggests, that the in-
tegration of IDA into an IDE and running the algorithm for every single
changed file is feasible.
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Figure 25 – Performance comparison of clones and iClones run
on the revisions of wget. The minimum clone length was set to
15 tokens (≈ 1.5 LOC) resulting in around 15,000 clone pairs per
revision.

5.3.2 gcc

The second test candidate is gcc which is significantly larger than wget.
Looking at Figure 26, the same pattern as with wget can be observed. The
increased time usage for revision 15 results from a bug in the version of
clones that was used for testing.

Analogous to wget, the analysis of the first revision takes more time with
iClones than with clones. However, any other revision is processed much
faster. In comparison to wget, the filtering phase is more obvious, because
the size of the clone pair set is much larger. Apart from some exceptions, the
time needed for filtering, is proportional to the overall time of the respective
revision. When comparing the overall time of each revision to the percentage
of changed files from Figure 22b, similarities in the pattern can be detected.
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Figure 26 – Performance comparison of clones and iClones run
on the revisions of gcc. The minimum clone length was set to 200
tokens (≈ 20 LOC) resulting in between 10,000 and 30,000 clone
pairs per revision.
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Increasing the size of the clone pair set by reducing the minimum length of
clone pairs results in a different picture. Observing Figure 27 it can be seen,
that the time needed for each phase except the matching phase increases
slightly. On the other hand, the time usage of the matching phases rises
dramatically. This is due to the fact, that many more clones pairs need to
be matched against each other. However, the increase is not dependent on
the percentage of files changed, but rather on the number of clone pairs, that
are affected by the changed files. This can be seen by comparing revisions 7
and 15. Figure 22b shows that in revision 15 more than twice as many files
changed than in revision 7, but still the matching phase of revision 7 takes
almost three times as long as the one of revision 15.

5.3.3 kernel

The third and last candidate on which iClones was tested is the Linux
kernel. Apart from being the largest program in terms of SLOC, the kernel
is different from the other two scenarios, because of having a large percentage
of its files changed per revision. Figure 28 shows how this influences the time
consumption. In contrast to the other candidate programs, the first revision
requires noticeably more time than with clones. Although the next few
revisions need less time with iClones in comparison to clones, every other
revision requires considerably more time. Instead of an extended matching
phase, the excessive time consumption results from an elongated tokenizing
and construction phase. There are several reasons for this:

• In contrast to both other candidates, the kernel has a huge amount of
files changed for the later revisions. In addition, a noticeable amount
of files is added for each revision. Every new and modified file needs to
be tokenized, requiring a great share of the overall time. Considering
that around 35% of the source files are added or modified for each
revision, 35% of the kernel’s source code needs to be tokenized for
each revision.

• The number of added, deleted and modified files is also responsible for
the time required to update the suffix tree. The more changed files
need to be processed, the more costly is the suffix tree update. The
huge amount of changed files requires extensive modification of the
suffix tree.

• The linear growth of the kernel’s size is not to be neglected. Observing
Figure 22c, one can observe, that in every revision more files are added
than deleted. Starting from around 3,600,000 SLOC, the kernel’s size
increases to 5,600,000 SLOC. Needless to say, that the time needed

67



0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19

se
co

nd
s

Revision

Token/Construct
Find
Filter

Other

(a) clones

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19

se
co

nd
s

Revision

Token/Construct
Find
Filter

Match
Other

(b) iClones

Figure 27 – Performance comparison of clones and iClones run
on the revisions of gcc. The minimum clone length was set to 40
tokens (≈ 4 LOC) resulting in between 1,000,000 and 1,300,000
clone pairs per revision.
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to analyze a revision depends on the revision’s size. This can also be
observed in conjunction with clones observing Figures 28a and 29a.

All three factors contribute to the increased time usage of the tokenizing
and construction phase. In contrast to the previous test candidates, the
extended matching phase does not carry as much weight as shown in Figure
29.

5.4 Summary

All three test candidates show, that independent of the number of detected
clone pairs, iClones needs more time than clones to analyze the first revision
of a program. This overhead is caused by using multiple token tables and a
generalized suffix tree. Using multiple token tables requires two indirections
instead of a single one. Although this is just a minimal increase for a single
access, the intense usage of the token tables makes the overhead noticeable.

Furthermore, the increased complexity of the suffix tree contributes to the
increased time consumption. Maintaining the links for keeping edge labels
consistent is done, although only a single revision is to be analyzed. Whether
this overhead is acceptable for analyzing a single revision of a program de-
pends on the specific application.

In addition to causing a calculation overhead, the extended data structures
cause iClones to require more memory than clones. This is due to internal
references, which on the one hand are required to assure consistency, and on
the other hand allow faster processing. The bi-directional links for keeping
edge labels consistent as described in Section 3.2.2 are an example for ad-
ditional references. The reference from an external node to the clone pairs
which relate to this node is another one. Still, the memory consumption
is proportional to the size of the revision which is analyzed. As everything
related to a specific revision is discarded upon analyzing the next revision,
no artifacts remain which could possibly lead to an increased memory con-
sumption with every new revision, independent of the revision’s size.

Regarding the tests which have been presented in this thesis, iClones needs
around three times as much memory compared to clones. When analyzing
revision 1 of gcc, clones needs around 550MByte, whereas iClones requires
1500MByte. For analyzing revision 1 of the kernel, both tools require four
times as much memory compared to analyzing gcc. There are two reason for
the increased memory consumption of iClones. As mentioned above, data
structures have been extended to be reused. Additional references and links
require more space. The other reason is, that iClones cannot discard any
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Figure 28 – Performance comparison of clones and iClones run
on the revisions of the kernel. The minimum clone length was set
to 300 tokens (≈ 30 LOC) resulting in between 10,000 and 40,000
clone pairs per revision.
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Figure 29 – Performance comparison of clones and iClones run
on the revisions of the kernel. The minimum clone length was set
to 200 tokens (≈ 20 LOC) resulting in between 200,000 to 800,000
clone pairs per revision.
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data structures, because they are to be reused for the analysis of the next
revision. clones can discard any intermediate data structures once they are
not needed any more. It does not hold all data structures in memory at
the same time. iClones on the other hand is not able to free memory by
releasing intermediate data structures. This leads to a noticeably increased
overall memory usage.
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6 Conclusion

This section interprets the evaluation results presented in the last section
and describes some thoughts for future development. Any conclusions and
numbers are based on the tests that have been run and presented in this
thesis. Further evaluation is needed to verify that these numbers and conclu-
sions are generally valid. Section 6.1 draws conclusions from the test results
for the different phases of iClones. Part 6.2 summarizes IDA and Section
6.3 presents perspectives for future work. Finally, Section 6.4 names some
possible applications for IDA and iClones.

6.1 iClones and its Different Phases

Section 5.3 showed, that no general statement can be made about how much
time iClones can save in comparison to clones. Different factors affect the
time consumption of different phases and contribute to the overall time
usage. The following sections answer Question 8 by describing which factors
affect iClones’ phases.

6.1.1 Tokenizing/Constructing

The time needed for tokenizing depends on the amount and size of files
that changed in the respective revision. The more SLOC the changed files
contain, the more time is needed to parse the files and build the token tables
for them. This is nothing special to iClones and the time contribution is
relatively low. However, iClones has an obvious advantage towards clones,
because it just needs to tokenize new and modified files, whereas clones
needs to tokenize all files of every revision.

The modification of the suffix tree on the other hand, needs a little more in-
vestigation. The test results showed, that this phase depends on the number
of changes made for the current revision. There is a definite time advantage
of iClones towards clones if the percentage of changed files stays within a
limited range. Testing with wget and gcc showed, that with around 10% of
changed files, modifying the suffix tree is noticeably faster than rebuilding
the complete tree. On the other hand, when around 20% and more of the
files change, there is no obvious benefit in modifying the tree. These num-
bers do however heavily depend on the system on which the program is run
and the number of SLOC contained in the files.
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6.1.2 Finding Maximal Matches

The time needed to run Baker’s algorithm depends only on the size of the
suffix tree and the number of clone pairs found. During the analysis of
multiple revisions and given that the program does not dramatically change,
the size of the suffix tree stays almost the same, although files are added,
deleted and modified. This results in an almost constant time usage by
this phase. iClones needs 30% to 40% more time than clones due to the
additional indirection caused by the use of multiple token tables and the
test whether edges are added or not.

6.1.3 Filtering

The time required for filtering depends on the size of the clone pair set
and the number of potentially new clone pairs extracted by the previous
phase. Like with tokenizing, the share of the overall time which relates to
the filtering phase is fairly small. In most cases, iClones needs to filter less
pairs than clones, because the set of new clone pairs which are extracted
from the suffix tree is smaller than the set of all clone pairs which needs to
be filtered by clones.

6.1.4 Matching

This phase has the most influence on the overall time consumption of the
tool iClones. Similar to the construction phase, one might assume the time
usage is proportional to the percentage of files changed. However, the time
in fact depends on the number of clone pairs which are affected by the
changed files. When many clone pairs for which at least one fragment stems
from a modified file are marked as deleted, the number of possible matches
for potentially new clone pairs increases. Due to the quadratic complexity
of the matching algorithm, every new clone pair needs to be compared to
more deleted clone pairs and the time usage rapidly increases.

6.1.5 Other

This phase depends on the number of changes that are made. As it contains
mostly preparations and clean-up actions, more changes lead to a higher time
consumption. This phase becomes noticeable with an increasing number of
changes from one revision to the next, but still has limited influence on the
overall time.
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6.2 Summary of Results

Within this thesis, the incremental clone detection approach IDA has been
presented. In contrast to conventional clone detection approaches, IDA an-
alyzes multiple revisions of a program. The benefit compared to separate
clone detection for each revision is, that intermediate data structures can
be reused for the analysis of the next revision. This avoids analyzing parts
of the source code again and again which do not change between revisions.
Using information about the files that changed from the previous to the
current revision, IDA modifies the token tables, the generalized suffix tree
and the set of clone pairs to conform to the current revision. The result
produced by IDA is a set of clone pairs for each revision that is analyzed.

In addition to only creating independent sets of clone pairs, a mapping is
created between the clone pairs of two consecutive revisions. To make clone
pairs traceable across revisions, each clone pair is assigned a unique ID. If
the clone pair is found in another revision, it is either unchanged, or some
kind of modifications has happened to the clone pair. Possible modifications
are a change in location, a changed type or a structural change. Wherever
possible, changes to clone pairs are derived from the modifications that are
done to the suffix tree.

Remaining clone pairs, whose changes could not be derived from the suf-
fix tree, are subsequently checked for modifications. New clone pairs are
matched with possibly deleted clone pairs in order to find modified clone
pairs. This has to be done in a post processing step, because already slight
modifications in a clone pairs token sequence inhibit concluding the change
from the suffix tree. After matching has been done, the changes that hap-
pened to each clone pair are reported.

IDA has been implemented in the tool iClones. iClones is a derivation of
the tool clones from the Bauhaus project. iClones has been evaluated by
comparing its performance to clones.

6.2.1 iClones and clones

iClones needs considerably less time than the existing token-based approach
clones for analyzing multiple revisions of a program when less than 10% of
the program’s files changed between two revisions. Results show that given
a limited amount of files that change per revision, iClones is already faster
in analyzing only two revisions. With any following revision, this advantage
becomes more and more explicit. How much time is saved compared to
clones depends mainly on the number of files that change per revision.
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What could also be seen is, that iClones requires noticeably more time to
analyze the first revision of the program. This indicates, that clones has an
advantage when only a single revision of a program is to be analyzed.

Unfortunately, no large-scale tests could be run to verify, that the mapping
between clone pairs produced by iClones is correct and senseful. Due to
the absence of benchmarks [KN06], only limited test cases could be used to
obtain an indication, that iClones’ results are correct and useful. Further
investigation is needed to solve this issue.

6.3 Future Research

During this thesis, some problems related to IDA and iClones have been
mentioned which could not be solved within this thesis. This section briefly
describes ideas that might help to improve IDA and iClones but could not
yet be considered. These will serve as a basis for future work on IDA and
its implementation.

6.3.1 Testing the Mapping

The mapping between clone pairs created by iClones could not be tested on
a large scale for correctness. To make the mapping usable and base further
assumptions on it, the soundness of the mapping has to be verified. This
could either be done by checking the mapping according to an editing log
or comparing it to reference data obtained by some other method.

6.3.2 Rerunning Baker’s algorithm

Though running Baker’s algorithm is comparatively fast, there is still room
for improvement. If it was known, that large sub-trees of the suffix tree do
not contain any new edges and due to the length criteria cannot form new
clone pairs, these sub-trees could be left out by the algorithm. However,
one has to make sure that the overhead for managing the information which
sub-trees contain new edges, does not exceed the time which can be saved
by leaving out portions of the tree.
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6.3.3 Parameterized Detection

In its current version, IDA supports the detection of unparameterized clone
pairs. IDA might be extended to allow parameterized clone detection, reveal-
ing only type-2 clone pairs with consistent changes. This requires combining
the concepts of parameterized strings and generalized suffix trees. The im-
pact of removing or adding a parameterized string to ∆ on the parameterized
generalized suffix tree must be investigated. If the impact stays in a limited
range, parameterized clone detection can be integrated into IDA.

6.3.4 Saving Intermediate Results

iClones still needs a considerable amount of time to produce its results,
although large improvement has been made compared to clones. As new
revisions become available, it might be rather painful to start analyzing
everything from the very beginning. One could think of offering a facility,
that can store the internal state of iClones and its data structures on disk.
Whenever new revisions become available, iClones could reload this state
and proceed from where it stopped last time.

6.3.5 Develop a Customized Output Format

Current output formats implemented in clones and iClones are not designed
for saving information about clone pairs across multiple revisions. This leads
to a lot of data being represented redundantly. One could think of a new
format for saving information about clone pairs, which tries to eliminate this
redundancy and leads to a significantly smaller file size.

6.3.6 Finding Split Clones

A change that can likely happen to a clone pair is, that one of its fragments is
split because tokens are inserted. IDA reports only situations as a structural
change where the same tokens have been inserted into both fragments. If
however different tokens are inserted, or the insertion takes place at different
locations, this is not recognized by IDA. Effort could be spent on finding
and reporting these situations.
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6.3.7 Sophisticated Distance Function

The distance function currently used by IDA to determine how likely a clone
pair is the modification of another pair is not optimal. Further effort is to
be spent on finding a function whose output resembles more the authors
actions. The time constraint is however to be kept in mind. The function
should require constant or at most linear time.

6.3.8 Using Parallel Processes

To speed up the matching phase, IDA could be extended in order to use
parallel processes. As every clone pair is just contained in a single set and
the sets are processed independently, the work could be delegated to more
than one processor.

6.3.9 Detailed Information About Changes

Probably the most promising improvement would be considering changes
based on lines or even tokens instead of files. This would most likely not
accelerate the modification of the suffix tree, but allow for much more precise
information about modifications of fragments. Knowing that the lines of a
fragment did not change, no structural or type modification can wrongly be
reported for the respective clone pair.

Additionally, time can be saved by the extra information, because clone pairs
whose fragments are not changed, do not need to be checked for structural
and type modification. The calculation of the location modification would
also be straightforward.

One could also think of reusing token tables of changed files. Based on the
information which lines of the file changed, only parts of the token table
would need to be updated.

6.4 Applications for IDA

There are two applications of IDA envisioned. One is integrating IDA into
an IDE to do “on-line” clone detection. The other is to aid in investigating
the evolution of clones.
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Integrating IDA into an IDE allows the user to get up-to-date information
about clones. IDA runs as a background process and holds the token tables,
the suffix tree and the set of clone pairs for the program that the user edits.
When the user modifies a file of the program, the new state of the program
is assumed to be a new revision of the program with a single file changed.
This new revision will be processed as described in this thesis. IDA does not
require a lot of time processing the revision, considering that only a single
file has changed. IDA’s results inform the user about how and which of the
clone pairs were affected by his actions.

The other possible application of IDA is to assist in investigating the evo-
lution of clones. Clones can be detected for multiple revisions of a program
requiring less time than separate clone detection for each revision. By us-
ing the mapping that IDA produces, the lifetime of each clone pair can be
retrieved. Starting from simple questions like

• What is the average lifetime of a clone pair?

• How many clone pairs are added and how many deleted per revision?

• How often is the structure of a clone pair changed?

diverse quantitative and qualitative analyses can be run using IDA’s results.
After all, understanding the evolution of clones will contribute to answering
the question if clones are to be considered harmful or not.
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A Supplying Data to iClones

For searching clone pairs in different revisions of a program, iClones needs
access to the source code of every revision which is to be analyzed. iClones
expects a single directory which contains one subdirectory for each revision
of the program. Because directories are processed in alphanumerical order,
the naming scheme should reflect the order in which the revisions are to be
analyzed.

In addition to the source code for each revision, iClones needs a list of
changes which happened from the last revision to the current one. These
changes need to be summarized in a file named changes, which must be
located in the top-level directory of each revision. Note, that the first re-
vision does not need such a file, because every source code file is assumed
to be added. Figure 30 shows the scheme for the directory structure. The
directory base is passed as an argument to iClones.

rev 1 ... rev nrev 0

changes changes changes... ... ...

base

...

Figure 30 – Scheme for the directory structure which is expected
by iClones.

As stated above, changes are supplied in a file called changes for every
revision. The format of this file follows the format used by subversion9, for
example when running the command svn status. Each line represents a
change to one single file. A line consists of a character identifying the type
of the change and the path to the file which has been changed relative to the
revisions top-level directory, separated by a space character. The following
changes are supported.

• A: Indicates, that the respective file has been added in this revision.

• D: The corresponding file has been deleted in this revision.

9http://subversion.tigris.org/
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• M: The file has been modified between the last and the current revision

Lines starting with the # character are ignored and can be used for com-
ments. The order in which changed files are given is not important, as every
change is processed on its own. A sample file is shown in Figure 31.

# Comments are ignored

M src/util/serializer.c

M src/main/main.c

A src/util/printer.h

A src/util/printer.c

Figure 31 – A sample file, containing information about changes.

Storing all files of every revision requires huge amount of disk space, espe-
cially for large programs. iClones actually only needs the files which have
changed in the current revision. All other files are ignored and therefore do
not need to exist. Note, that the changed files still need to be found under
the same directory path. Collecting all changed files in a single directory is
not supported by iClones.
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B Extended Output Format

Several formats exists in which information about clone pairs and clone
classes can be presented to a user. Unfortunately, all formats supported by
clones are designed for a set of clones found in a single revision of the pro-
gram. The need for a new format that can represent clones across revisions
has been mentioned in Section 6.3.5. Currently, iClones extends one of the
formats used by clones.

One of the formats to describe clone pairs is the clone pair format (cpf ).
The format carries the following information about each clone pair. The
two fragments of the clone pair are each specified by the file, start line and
end line in which the fragments appears. In addition, the type of the pair
and its length in tokens as well as in lines is given. A small sample cpf is
given in Figure 32.

test/single/1.c 1 2 test/single/2.c 4 5 1 2 2

test/single/2.c 3 4 test/single/3.c 1 2 1 2 2

test/single/1.c 1 2 test/single/2.c 2 3 2 2 2

test/single/2.c 2 3 test/single/2.c 4 5 1 2 2

Figure 32 – Sample output of clone pairs in the cpf. Each line
contains the file, start and end line of the first fragment, file start
and end line of the second fragment, the type and the length in
lines and tokens of the clone pair.

Unfortunately the format is not distinct enough to embody all information
produced by iClones. Two extensions have to be made to the format in
order to be useful for iClones. First, each clone pair is given a unique ID.
This is important in order to trace a clone pair across revisions.

The second extension is a status tag for each pair describing which changes
happened to the clone pair from the last to the current revision. Together
with its ID, the nature of the change can be obtained. Currently, the fol-
lowing status tags are used by iClones.

• +: The clone pair has been added in this revision. It was not present
in the previous revision.

• -: The clone pair has been deleted. It was present in the last revision
but does no longer exist.

• T: The location of at least one of the fragments from the clone pair
has changed in terms of tokens.
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• L: Same as T using lines instead of tokens.

• Y: Indicates, that the type of the clone pair has changed.

• S: A structural modification happened to the fragments of the clone
pair.

• If no tag is given, the clone pair has not changed in any way from the
last to the current revision.

Note, that T, L, Y and S can appear in any arbitrary combination.

A sample output of iClones in the extended cpf for a single revision is
shown in Figure 33. Note, that the second pairs’ fragments still relate to
rev0, because the pair has been deleted and is not found in rev1. Every
pair that is removed has to be reported as deleted in the successive revision,
because during the analysis of the last revision in which the pair is contained,
it cannot be known that the pair will be deleted.

1 test/multi/rev1/1.c 1 2 test/multi/rev1/2.c 4 5 1 2 2 TL

2 test/multi/rev0/2.c 3 4 test/multi/rev0/3.c 1 2 1 2 2 -

3 test/multi/rev1/1.c 1 2 test/multi/rev1/2.c 2 3 2 2 2

4 test/multi/rev1/2.c 2 3 test/multi/rev1/2.c 4 5 1 2 2 +

Figure 33 – Sample output of clone pairs in the extended cpf.
Each line contains the ID, file, start and end line of the first frag-
ment, file start and end line of the second fragment, the type, the
length in lines and tokens and the modification tag of the clone
pair.

Other output formats are currently not supported, but could be extended
in a similar fashion.
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