
Ensuring Well-Behaved Usage of APIs through Syntactic Constraints

Martin Feilkas and Daniel Ratiu
Institut für Informatik

Technische Universität München
Boltzmannstr. 3, D-85748 Garching
feilkas|ratiu@in.tum.de

Abstract

Libraries are the most widespreaded form of software
reuse. In order to properly use a library API, its clients
should fulfill a series of (many times implicit) assumptions
made by the API programmers. Failing to fulfill these as-
sumptions leads to a misuse of the library and thereby to de-
fects in the client’s code. In this paper we present a method
for checking a well-behaved usage of an API through a
set of context-sensitive syntactic constraints over the API
clients. These constraints restrict the set of programs that
can be written with an API only to programs that fulfill the
API assumptions and thereby represent a well-behaved and
valid usage of the API. In this paper we present a set of typ-
ical assumption classes made by API providers about their
clients. We define a framework for formalizing the context-
sensitive constraints over the API client code and propose
a typical constraint for each class of assumptions. Thereby
we provide a mechanism that allows the provider of an API
to describe the knowledge of how an API is intended to be
used in an automatically checkable form. We present our
experience with parts of the Java Standard APIs.

1 Introduction

Domain-specific libraries represent the most widely used
form of software reuse. They offer implementations for the
concepts of a certain domain through program abstractions
such as classes and methods. Most of the times the API
providers and their users are totally decoupled. Thereby, the
users are left alone to understand the library and to prop-
erly use the library-defined abstractions for implementing
their programs. Today programming languages provide a
series of language mechanisms – e.g. checked exceptions,
static typing, visibility rules – for enforcing a good usage
of an API. However, only by writing programs that com-
pile, the users of a library can not be sure that they used
the library in a correct, safe and well-behaved manner. Be-
sides the knowledge made explicit through the program-

ming language, an API contains a considerable amount of
tacit knowledge about its domain. This knowledge is cap-
tured implicitly in a series of assumptions about the clients
code and is most of the times only partially reflected, if ever,
in documentation, tests or informal API usage examples.
In Figure 1 we present examples of such assumptions en-
countered in the Java API. Using an API non-conform to
its foreseen usage scenarios can lead to misuses of the API.
This in turn not only generates (latent) bugs or extensibility
problems but also leads to problems in understanding and
maintaining the API clients.

public class Stack { //package java.util;
 /** ... @throws: EmptyStackException - if this stack is empty. */
 public Object pop() { ... } ...
} a) Pop-Only-Non-Empty-Stacks

public class File { //package java.io;
 /** [...] The return value should always be checked to make sure that the rename
 * operation was successful. */
 public boolean renameTo(File dest) { ... } ...
} b) Check-The-Return-Of-RenameTo

public class Component { //package java.awt;
 /** ... This method is called internally by the toolkit and should not be called
 * directly by programs. */
 public void addNotify() { ... } ...
} d) Do-Not-Call-AddNotify

public class Component { //package java.awt;
 /** [...] Subclasses [...] that override this method should either call super.update(g),
 * or call paint(g) directly from their update method */
 public void update(Graphics g) { ... } ...
} c) Do-Not-Forget-To-Paint

Figure 1. Assumptions in the Java API

In this paper we propose a framework (Section 3) to
describe API assumptions as a set of API usage patterns
that reflect the envisioned well-behaved usage of the API.
We advocate that often the assumptions are expressible as
context-sensitive constraints over the syntax of the API
clients (Section 4). In Section 5 we present our experi-
ence with several assumptions in the Java library. Section 6
presents the related work and Section 7 concludes the paper.

2 Well-behavedness in using the Java APIs
Below we present examples of assumptions about the

well-behaved usage of the Java standard API. The exam-
ples are categorized in assumption classes, each class being
described in a paragraph. Each of the following examples
represent a case of tacit knowledge about how to properly
use the API.

Assumption about the system state. The properties of
the state of the system before and after a method is exe-
cuted are of capital importance. They are expressed in plain
English through phrases such as: “before calling X check
that ...”. The API provider makes an assumption that before
calling a method the clients should check that the system is
in the required state. A well known case where assumptions
about the system’s state are present is the method ‘pop’
of the class ‘java.util.Stack’ (Figure 1a – “Pop-Only-Non-
Empty-Stacks”). The Java API providers assume that ‘pop’
is not called on an object representing an empty stack. Oth-
erwise the contract of the ‘pop’ method is broken and this
results is an Java runtime exception. This is a latent bug
which manifests only at runtime.

Assumptions about the communication. Another class
of assumptions about the clients regards the communication
between modules through the parameters and return values
of functions. These assumptions constrain the arguments
that should be passed to methods or how the caller should
deal with the return value. As an example we present the
case of the method ‘renameTo’ of the class ‘File’ (Figure
1b – “Check-The-Return-Of-RenameTo”). In the javadoc of
this method is a strong advice to check the value returned
by this method since it informs about the success or failure
of the rename operation. This is an example of a case in
which the return values of methods have special meanings
and should not be ignored. Failing to fulfill this assump-
tion leads to latent bugs in the case when the rename fails.
Our manual inspection of the previous versions of the API
revealed that this comment was introduced only since Java
1.4.2. 1.

Assumptions about the extensions. The third class of as-
sumptions is related to extensions that are performed to an
API. The extensions are very frequent especially in the case
of frameworks. In plain English these assumptions are ex-
pressed through sentences like: “whenever you extend X
you should do Y”. For example, the subclasses of the class
‘Component’ that override the method ‘update’ should take
care themselves about the painting of the component (Fig-
ure 1c – “Do-Not-Forget-To-Paint”). Failing to meet this
assumption leads to components that are not painted prop-
erly. Our manual inspection of the previous versions of the

1The version 1.3.0 of the API does not have this comment http://
java.sun.com/j2se/1.3/docs/api/java/io/File.html

ClsDecl ::= Visibility “class ” Name “ extends ” ClsInh“{” (FieldDecl |MethDecl | MethOv)* “}”
MethOv ::= MethDecl
MethDecl ::= Visibility RetType Name “(” [(ParamDecl “,”)* ParamDecl]“) {” StmtBlock “}”
StmtBlock ::= MethInv | IfStmt |WhileStmt | ...
IfStmt ::= “if(” Expr “) {” StmtBlock “}” [“else{“ StmtBlock “}”]
MethInv ::= [ObjName “.”] Name “(” [(Arg “,”)* Arg] “)”

Figure 2. Fragment of the Java grammar

API revealed that this comment was introduced only since
Java 1.4.2.

Scoping assumptions. The fourth class of assumptions
regard architecture. In plain English these assumptions are
described through sentences like: “method X should not be
called by the API clients”. These cases are many times
instances of the well known limitation between public vs.
published interfaces [5]. For example, the method ’addNo-
tify’, even if public, is not intended to be directly called
by the API clients (Figure 1d – “Do-Not-Call-AddNotify”).
Failing to address this assumption can result in anomalies
in the framework’s operation. Our manual inspection of the
previous versions of the API revealed that this comment was
already introduced in the early Java API version 1.1.

3 Anatomy of domain-specific constraints
In this section we introduce a formal framework for

defining syntactical constraints over the clients of a domain-
specific API. Firstly, we give a brief introduction of con-
straints that a language provides for restricting the set of
valid programs. Secondly, we define a formalism that en-
ables the definition of constraints over the domain abstrac-
tions defined in an API. In Figure 3 we present an example
of our framework: in the upper part is the Java source code,
the corresponding syntax graphs are sketched in the middle
and in the lower part we present examples of our formalism.
In Section 4 we instantiate this framework to express syn-
tactic constraints that can be used for automatically check-
ing the assumptions presented in Section 2.

Constraints in programming languages. A program-
ming language provides a set of language constructs. In
this paper we focus on the following set of constructs of
Java, shown also in Figure 2:

CJava = {ClsDecl, MethDecl, MethInv, StmtBlock, ...}

Each of these constructs corresponds to the kinds of nodes
that may appear in an abstract syntax graph of a Java pro-
gram. Implementing a program is done by instantiating the
constructs of the language. The grammar of a language de-
fines the basic structure of construct compositions that are
acceptable in programs – e.g. the BNF fragment of the Java
grammar presented in Figure 2 ensures that the declaration
of fields (FieldDecl) occurs only inside a class declaration
(ClsDecl). However, the context-free grammar of the lan-
guage is not capable of expressing all the constraints that

class Stack{
 public bool empty(){ . . . }
 public void push(Object obj){ . . . }
 public Object pop(){ . . . }
}

!MethDecl = {Example.foo(), PriorityStack.pop()}, !ParamTypeRef = {Stack}, !ClsInh = {Stack}, !MethInv = {s.push(“a”), s.pop()},
!MethOv = {PriorityStack.pop()}

A
P

I
si

de

public class Example {
 void foo(Stack s){
 s.push(“a”);
 s.pop();
 }

!MethDecl = {empty(), push(Object), pop()}

GetRefs(Object, ParamTypeRef) = {Object}
GetRefs(Object, RetTypeRef) = {Object}

Stack
ClsDecl

push

Object

MethDecl

ParType
obj

ParDecl

{ ... }

StmtBlk

pop

Object

MethDecl

RetType

{ ... }

StmtBlk
foo Stack

MethDecl ParType
s

ParDecl

{ ... }

StmtBlk push

pop
s

MethInv

MethInv
ObjRef

ObjRef
s

“a”
Arg

MethDecl

Legend:
- kind of the synt. graph. node
- functional abstr. declaration

- data abstraction declaration
- functional abstr. usage

- data abstraction usage
- other syntax graph node
- subnode

empty
MethDecl

. . .

public class PriorityStack extends Stack {
 @overrides
 public Object pop() { ... } ...
}

PriorityStack
ClsDecl

pop

Object

MethOv

RetType

{ ... }

StmtBlk

Stack
ClsInh

GetRefs(push(Object), MethInv) = {s.push(“a”)}, GetRefs(pop(), MethInv) = {s.pop()}, GetRefs(Stack, ParamTypeRef) = {Stack},
GetRefs(Stack, ClsInh) = {Stack}, GetRefs(pop(), MethOv) = {PriorityStack.pop()}

Example
ClsDecl

C
lie

nt
 s

id
e

Figure 3. Defining and using stacks

are needed in order to ensure that the constructs are only
used correctly. In order to capture these situations, context-
sensitive constraints like: “every variable must be declared
before it is used” or “the methods a class implements from
an interface must be public” are added to the programming
language and enforced by the parser (during so called se-
mantic analysis).

Notation: 1) In this paper we use only the language
constructs of Java that are defined in the (highly simplified)
fragment of a Java grammar from Figure 2. When refer-
ing to these language constructs we will always use an un-
derlined font. 2) We use a Java-like notation to navigate
over the syntax graph. So we will write x.Y for the set
of nodes of type Y ∈ CJava that are connected to a spe-
cific AST node x – e.g. if x is a node of type MethDecl
then x.V isibility represents the visibility of the method.
3) We write !c for the set of instances of the construct in
c (⊆ CJava) within a program – e.g. !ClsDecl is the set of
all class declarations in a program. 4) To make our notations
more readable we assume that every Name (Identifier) in
the abstract syntax graph is fully-qualified. 5) For the same
reasons we also introduce the notation x @ y which means
that x is contained as a subgraph in y – e.g. we will write
inv @ exp meaning that an instance inv of a method invo-
cation appears in the subgraph of an expression exp.

Constraints over the usage of domain-abstractions.
Programming languages enable programmers to represent
concepts that are needed to describe their domain of in-
terest. The abstraction mechanisms of Java (a set AM ⊂
CJava) are central for the definition and the usage of do-
main concepts through libraries. An abstraction mechanism
(∈ AM) contains two kinds of language constructs:

– Concept declarations (AMdecl) enable programmers

to define new domain-specific concepts. These constructs
are used by library programmers to provide the implemen-
tation of domain concepts to their clients.

– Concept bindings (AMuse) enable programmers to use
a domain-specific concept. This kind of constructs are used
by the API clients to access and use the implementation of
domain concepts in an API.

In the following we consider the core object-oriented ab-
stractions mechanisms (data abstraction and procedural ab-
straction):

AMdecl = {ClsDecl, MethDecl}
AMuse = {ClsInh, MethInv, ParaTypeRef, MethOv}

In Figure 3 (left) we present a class declaration and three
method declarations as examples of elements of AMdecl.
On the client side (right) we show different kinds of usages
of the declarations such as an invocation and an overriding
of the ‘pop’ method.

Let CD be the set of domain-specific concepts that are
defined using the abstraction mechanisms (AM) – e.g. in
Figure 3 (left) we have: CD = {Stack, empty, pop, push}.
The compiler accepts every usage of a concept implemen-
tation as long as it adheres to the language rules – e.g. ev-
ery invocation of the ‘pop’ method is allowed even if the
stack could be empty. However, many concept implemen-
tations that are provided by APIs cannot be used properly
in every situation that the programming language would
accept. This happens because the domain-concepts come
along with specific constraints. Just like the programming
language defines context-sensitive constraints to allow only
correct usage of its built-in constructs, the implementation
of domain-concepts CD also come along with certain re-
strictions that cannot be expressed within programming lan-
guages.

In order to identify the references to a certain declara-
tion in a program, we define the function GetRefs as fol-
lows: for a declaration d ∈ !AMdecl and a usage mecha-
nism u ∈ AMuse, GetRefs(d, u) returns the nodes in the
syntax graph of type u that are usages of d. As Figure 3
illustrates we can use this function for example to select all
the usages of the ‘pop’ method that appear as method invo-
cations (MethInv) or all the usages of pop due to overrid-
ing (MethOv):

GetRefs(pop, MethInv) = {s.pop()}
GetRefs(pop, MethOv) = {PriorityStack.pop()}

Domain-specific constraints. Domain-specific abstrac-
tions are always defined using a declaration mechanism. To
use a concept an adequate usage mechanism is needed. For
the definition of a concept-specific constraint we need three
ingredients: the declaration of the concept, the usage mech-
anism that should be covered by the constraint and a speci-
fication of the context in which the usage of the concept is
allowed. Formally, we define a constraint C to be:

C = 〈Decl, Use, Ctxt〉

where Decl is a concrete instance of a declaration ∈
!AMdecl (e.g. java.util.Stack.pop); Use is a usage mech-
anism ∈ AMuse that is applicable to the type of Decl (e.g.
MethInv); Ctxt is a predicate calculus formula that de-
fines the context of the usage (e.g. see Equation 1).

The semantics of a concept-specific constraint is:

∀GetRefs(Decl, Use) : Ctxt

In plain English, this means that for every usage of a spe-
cific declaration a certain context must be present. We will
use the identifier “use” as a variable within the Ctxt of a
constraint to access the usage that should fulfill the con-
straint. A constraint that enforces a well-behaved usage of
pop is:

PopInIf = 〈Decl : java.util.Stack.pop(), Use : MethInv,

Ctxt : ∃i ∈ !IfStmt : ∃m ∈ MethInv :

m @ i.Expr ∧ use @ i.StmtBlock∧ (1)

m.ObjName = use.ObjName ∧m.Name = “empty”〉

Intuitively, this constraint demands that every invocation of
the ‘pop’ method must reside in an if-statement that con-
tains an expression which checks that the stack might be
empty.

4 Expressing assumptions as constraints
In the following we instantiate our framework presented

in the previous section to define constraints on the API
client code in order to tackle the assumptions from Sec-
tion 2. To each class of assumptions corresponds a family
of constraints over the syntax as described in the following
paragraphs. We present a formalization for each constraint,
give an intuitive explanation and discuss the possible varia-
tions and limitations of the constraints.

Control-flow Constraints. The Java programming lan-
guage accepts every sequence of method invocations. But in
practice, the anticipated use of many API methods depends
on the state in which the system is. If the system is not
in the anticipated state then this usually causes exceptions
at runtime. Thus, before the clients invoke such methods,
they must assure themselves that the system is in the desired
state. For example, the “Pop-Only-Non-Empty-Stacks” as-
sumption can be made explicit through the PopInIf con-
straint (as defined in Equation 1). By enforcing the client
code to be compliant to this constraint, the maintainers see
explicitly (in the syntax) that the client code took the case
that the stack might be empty into account. Additionally
to the PopInIf constraint we could add more flexibility
by allowing also while-loops that check for emptiness. The
constraint might also be further refined by allowing ‘pop’
invocations if ‘push’ has been invoked directly in front of
them.

Data-flow Constraints. The communication between
modules is modeled through data-flow. We use the data-
flow constraints to address the communication assump-
tions presented in Section 2. We tackle the “Check-The-
Return-Of-RenameTo” assumption through the following
constraint:

〈Decl : java.io.F ile.renameTo(File),

Use : MethInv,Ctxt : ∃i ∈ !IfStmt : use @ i.Expr〉

Intuitively, this constraint makes sure that the ‘renameTo’
method invocations are always within the condition of if-
statements. A variation of this constraint is the situation
when the return value is saved into a local variable that
is further checked in a if-expression (extract-local-variable
refactoring). However, due to the lack of space we do not
tackle this case here. In Figure 4 we provide two exam-
ples of the well-behaved (left) and non well-behaved (right)
usage of the ‘renameTo’ method in the Java library.

package javax.swing.plaf.basic;
public class BasicDirectoryModel extends ... { ...
 public boolean renameFile(File oldFile, File newFile) {
 synchronized(fileCache) {
 if (oldFile.renameTo(newFile)) { ... } ...
 } } ... }

package java.util.logging;
public class FileHandler extends... {...
 private synchronized void rotate() {
 ...
 f1.renameTo(f2);
 } ... } ... }

Figure 4. Clients of the “renameTo” method

Inheritance Constraints. Inheritance is one of the most
important extension mechanisms of object-oriented lan-
guages. Inheriting from a class often implies that the sub-
class must be compliant to certain invariants assumed by
the super-class. We use the constraints on inheritance in
order to address the extension assumptions from Section 2.
The “Do-Not-Forget-To-Paint” assumption is made explicit

through the constraint:

〈Decl : java.awt.Component.update(Graphics),

Use : MethOv,Ctxt : ∃m ∈ !MethInv :

m @ use.StmtBlock ∧
m.Name = “update” ∧m.ObjName = “super”〉

Intuitively, each method that overrides ‘update’ from the
class ‘Component’ must call ‘update’ on the ‘super’ refer-
ence. In order to keep the constraint relatively simple, we
restrict only the form of the client in the sense that the up-
date method should be called – we do not completely check
whether this method is properly called. Our analysis of the
subclasses of ‘Component’ in ‘java.awt’ revealed (not sur-
prisingly) that all of them are well-behaved.

Scoping Constraints. Many times the difference between
public and published interfaces can be made explicitly
checkable through an advanced scoping mechanism such as
the one given by the following constraint that tackles the
“Do-Not-Call-AddNotify” assumption:

〈Decl : java.awt.Component.addNotify,

Use : MethInv, Ctxt : false〉

Intuitively, this constraint expresses the fact that, given a
set of API clients, the method ‘addNotify’ should never be
called (‘false’ expresses that there is no valid context from
which the method can be called). This constraint is very
simple but nevertheless it is very common since many meth-
ods of frameworks should not be ‘published’ to the clients
although they are declared ‘public’.

5 Experience
Pervasiveness of the constraints. Our programming ex-
perience tells that the proper usage of an API contains many
assumptions expressible as constraints over their clients’
syntax. In order to check how pervasive the need for con-
straints is, we inspect the constraints that are explicitly doc-
umented in the javadoc of the Java standard API. We iden-
tified the assumptions in the javadoc by searching for the
following phrases: “must always”, “must not”, “must be
called”, “should always”, “should not”, “should be called”.
For each hit we manually inspected the method and decided
whether it is a case of an API usage constraint that can be
expressed as restrictions over the API clients syntax. In Ta-
ble 1 we summarize our findings: the first column repre-
sents the part of the Java API that was inspected, the sec-
ond column (Hits) represents the number of places in the
javadoc that contain one of the above phrases. The third col-
umn presents the number of assumptions that we identified
to be expressible as syntactic constraints after the manual
inspection. On the right hand of our table we present the
number of constraints in each of our categories (i.e. CF –

control-flow, DF – data-flow, IN – inheritance, AR – archi-
tecture). We remark that from the places documented in the
javadoc, on average over 30% represent cases of constraints
of a syntactic nature. The bigger part of the other ones have
been descriptions of the semantics of the APIs. Further-
more, we are convinced that there are many assumptions
that we did not identify using our search method and there
are also assumptions not even documented in the javadoc
(as shown in Section 2 some of the assumptions are docu-
mented only in very late versions of the Java API).

Package Hits Synt CF DF IN AR

Java Util 23 6 1 0 4 1

Java IO 8 6 0 4 2 0

Java AWT 45 19 5 6 1 7

Eclipse JDT 37 12 4 1 4 3

Table 1. Assumptions in the Java API

Restrictiveness of the constraints. The question that we
aim to answer in the following is: in what measure are the
usages of the API well-behaved and comply to the syntac-
tic constraints and in what measure are our constraints too
strict? We answer this question by using our tool – the Java
Constraints Checker. This tool is based on the Eclipse tech-
nology and enables us to define the constraints over API
abstractions and check the client code whether it complies
with our constraints or not. In order to perform our exper-
iments we used the following sequence of steps: 1) define
a syntactic constraint, 2) run the analysis and 3) inspect the
results for false positives. The steps 1 and 3 are manual and
the step 2 is done fully automatic with the help of our tool.

The following table presents the results of analysing the
usage of Java API parts in Eclipse2. It shows how many of
the usages of a certain concept have been found (Hits) and
how many of these fulfilled the constraint (well-behaved).

By our manual inspection of the non-well-behaved us-

Constraint Hits Well-Beh. Non-Well-Beh.

pop 144 19 125 (109 wrappers)

renameTo 20 11 9 (7 in tests)

update 4 4 0

Table 2. Evaluation of syntactic constraints
ages of ‘renameTo’ we identified that seven of them have
been found in test code. Within test code the violation
of the constraint is less problematic than in system code.
The other non-well-behaved usages ignore the renameTo-
constraint and can be regarded as true-positives. We did not
find any call to ‘addNotify’ so this constraint was always
fulfilled. However, in the case of ‘pop’ we remark that most
of the usages are not well-behaved. However, 109 of the
125 violations of our constraint are wrapper methods that
assume that in turn their client code takes care about the

2Eclipse Core (org.eclipse.core.*) and JDT packages (org.eclipse.jdt.*)

state of the stack. So these warnings should be suppressed
and a constraint similar to the ‘pop’ constraint should be in-
troduced to these methods. In the other cases our manual
inspection revealed that these usages occur in highly algo-
rithmic pieces of code such as parsers. Although the stack
may be used correctly, these situations are most often very
long methods that are hard to understand. These results
show that most of the times the usage of the domain con-
cepts are well-behaved. If they are not well-behaved they
are latent bugs or hints to code smells.

6 Related work
Dynamic approaches. David Parnas [2] presented a

method for the specification of the behavior of software
module interfaces using trace assertions. The traces that
can be monitored during the execution of a system and
then be used to verify the correctness of the usage of an
interface. In contrast to our work trace assertions usually
cannot be checked statically. There is much recent work
[1, 11, 9] in mining the specifications of an API. These ap-
proaches concentrate on reverse engineering typical behav-
ioral usage-patterns of APIs using tracing techiques. These
usage-patterns are close to our control-flow constraints. A
key difference is that we define the usage-patterns up-front
and that we address a wider spectrum of possible usage of
an API.

Constraint Languages. The closest work to our paper
is the constraint language SCL [8, 7]. This language is in-
tended to be used to define and check properties that client
code of object-oriented frameworks has to fulfill. In this
work we advance on this in two directions: Firstly, we point
out and classify typical kinds of assumptions that the API
developers make about their clients and relate them with
kinds of syntactic constraints that the API users should ful-
fill. Secondly, we develop a formal framework for defining
syntactic constraints. Our constraint framework is purely
based on the grammar of a language, thus it is possible to
specify constraints that regard domain concepts as well as
language constructs. Furthermore the concept of syntactic
constraints as presented in Section 3 is language indepen-
dent and can be easily applied to other paradigms.

Static analysis. The properties that are checked by com-
mon static analysis like Findbugs3, PMD4 and others are
on the abstraction level of the programming language and
partially cover some of the low-level libraries (e.g. [6]). Al-
though we have chosen examples from the Java API since
it has many clients and is well known, our approach is tar-
geted towards domain-specific APIs. Design-by-Contract
methods like JML [10] also annotate constraints onto APIs
using pre-/postconditions and invariants. By simply fulfill-
ing these constraints the clients, even if they are provable

3http://findbugs.sourceforge.net/
4http://pmd.sourceforge.net/

to be semantically correct (e.g. using [4, 3]), they are not
necessarily well-behaved and thereby it is not obvious for
code-reviewers or maintainers to understand that the code
is really correct. By restricting the form of the API clients
we aim to increase the readability and support comprehen-
sion of the fact that the API is correctly used.

7 Conclusions
Library developers make assumptions about the usage

scenarios of the domain abstraction implemented in their
APIs. But usually these assumptions are only tacit and are
expressed (if ever) in textual documentation. A client of an
API can not be sure that he uses the API in a way that fits to
the expectations of the provider. Failing to use an API in a
well-behaved manner can lead to latent bugs and problems
in the comprehension and evolution of the clients. In this
paper we identified a series of classes of assumptions com-
monly made by API programmers about their clients. We
developed a framework for expressing these assumptions as
syntactic constraints that restrict the form of the clients to
the valid usages of the API. This enables the client to auto-
matically check if his usage of the API is well-behaved.

References
[1] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifica-

tions. SIGPLAN Not., 37(1):4–16, 2002.
[2] W. Bartussek and D. L. Parnas. Using assertions about traces

to write abstract specifications for software modules. In 2nd
Conf. of the European Cooperation on Inf. Springer, 1978.

[3] D. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. Saxe.
Extended static checking. Technical Report #159, Compaq
SRC, 1998.

[4] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge, G. Nel-
son, J. Saxe, and R. Stata. Extended static checking for java.
In PLDI. ACM, 2002.

[5] M. Fowler. Public versus published interfaces. IEEE Softw.,
2002.

[6] D. Gregor and S. Schupp. Stllint: lifting static checking
from languages to libraries. Softw. Pract. Exper., 36(3):225–
254, 2006.

[7] D. Hou. Scl: Static enforcement and exploration of devel-
oper intent in source code. In ICSE Companion. IEEE, 2007.

[8] D. Hou and H. J. Hoover. Using SCL to specify and check
design intent in source code. IEEE Transactions on Software
Engineering, 32(6):404–423, 2006.

[9] J. Koskinen, M. Kettunen, and T. Systa. Profile-based
approach to support comprehension of software behavior.
ICPC’06.

[10] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Ja-
cobs. JML: notations and tools supporting detailed design
in Java. In OOPSLA 2000 Companion, 2000.

[11] C. D. Roover, I. Michiels, K. Gybels, K. Gybels, and
T. D’Hondt. An approach to high-level behavioral program
documentation allowing lightweight verification. ICPC’06.

