
— Problem Statement —
Variability Models Must Not be Invariant!

Elmar Juergens and Markus Pizka
Technische Universität München

Institut für Informatik
{juergens, pizka}@in.tum.de

Abstract

Variability modeling techniques are used to specify vari-
able aspects of members of a family of related software ar-
tifacts. Instances of variability models are then used to effi-
ciently produce members of such a family. By making vari-
ability explicit, variability models determine implicitly the
common properties among family members as well.

This partitioning of information into variable and invari-
ant parts predetermines the reuse benefit obtainable from a
variability model. In most current approaches to variability
modeling, the decision between variable and invariant in-
formation has to be done in an up-front manner and is very
difficult to change later on. However, the distinction be-
tween variable and common parts of members of a system
family varies over time. Variability modeling techniques
must thus be able to cope with changes to the variability
models.

Since many variability modeling techniques do not cur-
rently support this, research is required to allow an evolu-
tion of the distinction between what is variable and what is
invariant over time. This paper elaborates on the necessity,
related work and possible approaches to tackle this chal-
lenge.

Keywords modeling, software evolution, formal methods,
software reuse

1 Introduction

Since the term Software Engineering was coined in 1968
[14], software reuse is considered a potential means to alle-
viate the difficulties encountered in the construction of large
software systems. It promises to decrease costs and increase
quality by reusing existing components for the construction
of new systems. This hope also drives several approaches
that receive increased attention in recent years, such as gen-
erative programming, model driven software development

and software product lines.
As accurately noted by Krueger in his influential paper

on software reuse [9], abstractions are the basis of all reuse
mechanisms. In [17], Wegner illustrates the close relation-
ship between abstractions and reuse by pointing out that ev-
ery abstraction describes a collection of related, reusable
entities, and that vice versa, every collection of related,
reusable entities determines an abstraction. Hence, in or-
der to better understand the potential of approaches to soft-
ware reuse — both old and new ones — it is important to
understand the principles of abstraction.

In order to better understand the benefit of variability
modeling approaches (such as model driven software devel-
opment and software product lines), we investigate in this
paper various abstraction mechanisms from the perspective
of software reuse. This investigation reveals that the parti-
tioning of information into variable and invariant parts of an
abstraction is the crucial factor determining the overall ben-
efit of an abstraction for software reuse. This paper further
shows that it is impossible to achieve an optimal partition-
ing in practice, if it cannot be altered during the lifetime of
an abstraction, since the creation of an optimal partitioning
would requires complete and in-advance knowledge of fu-
ture requirements. From this, we conclude that in order to
exploit the optimal reuse benefit of an abstraction, it is of
utmost importance to be able to evolve the partitioning into
variable and invariable properties itself over the lifetime of
the abstraction.

Outline
The remainder of this paper is structured as follows:

Section 2 investigates the role of variability in different
abstraction mechanisms from the perspective of reuse.

Section 3 illustrates the impact that the amount of in-
variant information has on the reuse benefit an abstraction
provides.

Section 4 gives additional evidence for the claim that in-
creased variability is needed by referencing numerous iso-

lated approaches to tackle this problem for different abstrac-
tion mechanisms.

Section 5 concludes the paper with the appeal to join
research efforts in order to move from isolated ad-hoc ap-
proaches to a general, unified understanding of variability
evolution in abstraction mechanisms.

2 Abstractions, Reuse and Variability

According to Krueger [9], every abstraction mechanism
employed in software development comprises two levels:
the higher referred to as specification and the lower as real-
ization of an abstraction. Specifications define the variabil-
ity among the realizations of an abstraction. Different in-
stantiations of the variability defined within an abstraction
specification map to different realizations of the abstraction.
This perception of abstractions is depicted graphically in
Figure 1. The variability exposed by the abstraction spec-
ification is depicted by red, blue and green triangles. De-
pending on the variable information, the abstraction specifi-
cation maps to different abstraction realizations. This map-
ping is performed by abstraction mechanism-specific trans-
lation mechanisms. (In the case of programming languages
for example, it is performed by the compiler, for domain
specific languages by the generator and for libraries by the
developer that implements the library’s interfaces and meth-
ods.) The colored half-circles depict those parts of the ab-
straction realizations that are generated from the variable
information. The commonality among the realizations is
depicted by gray squares.

By making variability explicit, a specification also im-
plicitly defines the invariant parts of an abstraction. Since
they are common among all realizations of an abstraction,
they hold the potential for reuse: the bigger the invariant
parts are, the more information can be reused between ab-
straction realizations.1

This consideration of abstractions as specification and
realization is still as applicable to the conception of ab-
straction mechanisms today, as it was in 1992. Let us con-
sider various commonly used reuse mechanism from this
perspective.2

Assembly Language: Every statement in assembly lan-
guage abstracts from a micro program in machine
code. Assembly language statements are abstraction
specifications, the micro programs they are translated
to are the corresponding abstraction realizations. The
variability consists of the parameters offered by the

1Krueger further divides the invariant information into a visible and
a hidden part. The hidden part comprises those common aspects among
abstraction realizations, which are not “visible” in the abstraction specifi-
cation. For the sake of simplicity, we omit the distinction between visible
and hidden aspects of invariant information in abstractions in this paper.

2Several of these observations can already be found in [9]

{ , , ,...}
Specification

Realization

Figure 1. Abstraction Principles

statements. Every aspect of a statement that cannot
be parameterized is common among all corresponding
machine code programs.
The statement MULT <reg1>,<reg2> for example
performs the multiplication of 32 bit numbers. The
registers from which the numbers are read, are vari-
able. However, the actual algorithm used for multipli-
cation, or the register in which the result is stored, is
invariant and thus common among all micro programs
generated from MULT statements.

High Level Programming Languages (i.e. C/C++, Java):
Every construct in a high level programming language
specifies an abstraction that is realized by an assembly
language program. Again, the variability is defined by
the parameters provided on the specification level.
The statement while(<expr>) {<block>} for
example loops over the statements in <block>,
as long as <expr> evaluates to true. Parameters
<expr> and <block> are variable, the fact that
a loop is performed, and the assembly language
statements generated for it are invariant, however.

Libraries: High level programming languages provide
abstraction mechanisms (i.e. methods, classes) that
are employed to create abstractions that can be reused
in programs in that language. Libraries are collections
of such abstractions. The public interface provided by
a class in a library corresponds to the specification, its
implementation to the realization of an abstraction.
MsgBox("Low Battery", vbWarning)3 for
example opens a dialog that displays a warning mes-
sage. The parameters of the method make the warning

3In Microsoft Visual Basic 6.0

and the message type variable. All other aspects —
such as color, widgets, displayed icons, size or layout
of the dialog — are invariant.

Domain Specific Languages (DSLs): DSLs allow the
concise expression of problems from a specific
technical or business domain by offering abstractions
from that domain as first-class language elements.
These language elements are abstraction specifications
that are often translated to programs in high level
programming languages.
An example for this are regular expressions, from
which Lex4 generates finite state machines that
perform tokenization in compiler front ends. In this
case, the regular expressions define the variability:
Lex can generate finite state machines for all regular
languages. However, the finite state machine im-
plementation, the target language and the input text
encoding are invariant and thus common among all
generated lexers.

Software Product Lines: In software product lines, mem-
bers of a family of software systems are created by
composition of standardized components. In feature
modeling tools such as fmp5, configurations serve as
composition descriptions. In such a setting, feature di-
agrams serve as abstraction specifications. The sys-
tems that are composed from their configurations cor-
respond to the abstraction realizations.
In software product lines it is especially obvious that
any aspect that is not explicitly made variable in the
feature diagram is invariant and thus necessarily com-
mon among all realizations.

The above mentioned abstraction mechanisms are often
layered on top of each other in practice: Micro programs are
generated from assembly language, assembly language is
compiled from programs in high level languages, and so on.
Every layer increases the level of abstraction of the highest
abstraction specification.

For software developers working on the highest level of
abstraction in this stack has two major consequences:

Increase in productivity: developer productivity in-
creases, since many details are “abstracted away” and
taken care of by the translation to lower levels. For
example, letting the compiler take care of register
allocation saves developer time and effort. Regarded
from the perspective of variability and invariance in
abstraction specifications, this means moving register
allocation from the variable to the invariant part: the
algorithm employed for register allocation is invariant

4The Lex & Yacc Page: http://dinosaur.compilertools.net
5Feature Modeling Plug-in: http://gp.uwaterloo.ca/fmp

for all high level language programs that are translated
by a compiler.

Decrease in applicability: The developer loses some con-
trol over the final result. E. g. since the compiler takes
care of register allocation, a developer cannot influence
it anymore, even if it was needed. In this example,
this limits the applicability of higher level program-
ming languages for system level programming.
This negative effect necessarily increases with the level
of abstraction. The more invariant information an ab-
straction contains, the more specialized and thus the
less widely applicable it becomes. Obviously, a DSL
for parser generation cannot be used to program a web
server.

Making information in an abstraction invariant thus in-
creases productivity and decreases applicability. This gives
rise to the crucial question of abstraction creation:

What should be variable, and what should be invariant?

We are convinced that (in general), this question cannot
be answered satisfactorily once for the entire lifetime of an
abstraction. Instead, we believe that it must evolve continu-
ously in order to reflect unanticipated changes.

3. Invariance Dilemma

The overall reuse benefit that the creation of an abstrac-
tion brings to software development, depends on at least two
things: how much effort does the application of the abstrac-
tion save, and how many times can the abstraction be ap-
plied.

Unfortunately, both factors depend on the level of ab-
straction of the abstraction specification, and thus on its
amount of invariant information. Hence, increasing the
level of abstraction reduces the applicability, and vice versa,
increasing the applicability by reducing invariant informa-
tion reduces the level of abstraction:

• Increasing invariant information increases the amount
of knowledge that can be reused among abstraction re-
alizations. The more invariant information, the higher
thus the saving in developer effort every time the ab-
straction is used.
However, more invariant information requires more
commonality among the abstraction realizations and
thus reduces the number of opportunities for applying
the abstraction.

• Reducing invariant information reduces the distance
between specification and realization and thus the size
of the reused artifacts. Reducing invariant information
thus reduces the amount of saved development effort
for each use of an abstraction.

However less invariant information relaxes the com-
monality requirement — an abstraction can be applied
more often.

The optimal amount of invariance in an abstraction can
thus only be determined with respect to the abstraction’s
use cases: ideally, all common aspects of the use cases of
an abstraction should be made invariant. In other words: if
the use cases of an abstraction are not known, it is not pos-
sible to determine the optimal partitioning of information
into variable and invariant parts of an abstraction. Since in
practice the use cases of an abstraction (including future use
cases!) are hardly ever known, we call this observation the
invariance dilemma.

Let us consider the development of a product line as an
example to make this dilemma more tangible. The Feature
Diagram in a product line defines the variability (and
commonality) among products. Every single feature that
is added to the diagram decreases the level of abstraction,
but increases the size of the product family (and thus the
potential number of applications).

If abstraction specifications cannot be altered during
their lifetime, abstraction creation is thus the quest for the
lesser evil: waste of potential productivity increase or waste
of potential abstraction applications.

This dilemma can be elegantly avoided, if abstractions
can be easily evolved during their lifetime. We start by cre-
ating an abstraction specification that only considers vari-
ability among the already known use cases. All commonal-
ity is made invariant. As soon as a new use case comes up
that requires to make a certain — formerly invariant — part
variable, the abstraction is adapted accordingly. This way,
abstractions start at the highest possible level of abstraction.
Every decrease of abstraction is however justified by an ad-
ditional application, avoiding the decrease in overall reuse
benefit.

If this procedure is followed consequently, this bottom-
up way of abstraction creation always achieves optimal
reuse benefit. However, in order to exploit this in practice,
it must be possible to adapt the separation between variable
and invariant information during the life time of the abstrac-
tion. In other words: variability models must be variable!

4. Variability Evolution

Since abstractions play such a central role in software
engineering, changes to an abstraction can affect many ar-
tifacts in a development process. In general, changes to the
specification of an abstraction affect the already existing in-
stances of the abstraction and the tools used for processing
them.

Figure 2 illustrates this problem, using Domain Specific
Languages as exemplary abstraction mechanism. Every

change to the specification of a language requires compen-
sating migrations of the words6 and adaptations of the pro-
cessing tools7 of the language.

Figure 2. Abstraction evolution triggers mi-
gration of existing words and adaptation of
processing tools

Performing these migrations manually is tedious, error
prone and costly. Abstraction mechanisms that do not au-
tomate these compensational efforts effectively inhibit ab-
straction evolution in practice.

Partial solutions to automate the compensational effort
triggered by abstraction evolution have been developed for
various abstraction mechanisms. The existence of these
efforts substantiates our claim for the need of abstraction
mechanisms that support variability evolution in practice.
These approaches include:

Schema Evolution: The schema of a database system 8 de-
termines which entities and relationships — and at-
tributes thereof — can be stored in a database. All as-
pects not contained in the schema are not considered.
The decision of which information to include into a
schema, is related to the decision which information
to make variable in an abstraction. Schema evolution
[2, 3] deals with altering this decision — that is the en-
tities, relations and attributes of a schema — while the
schema is in use.
Schema evolution research mainly deals with the prob-
lem of migrating instance data. Adaptation of tools
is only, if at all, considered laterally. However, after
decades of mainly academic interest, some transition
to industrial projects seems to be taking place [1].

Grammar Engineering: Grammars of different forms9

are used to describe the syntax of formal languages

6The term “word” is used as in formal language theory to depict strings
that conform to the language syntax.

7I.e. compiler, debugger, pretty printer, ...
8Independent of whether it is relational, hierarchical or object oriented
9I.e. context free grammars, XML schemas or document type defini-

tions. Compare [8] for a more comprehensive list.

and the structure of software systems. Grammar engi-
neering [8, 10] deals with the systematic development
and maintenance of grammars. In [12, 11], Lämmel
also investigates the coupled evolution of grammars
and their words.
While these approaches constitute considerable
progress in the field, a lot of research is still necessary
in order to better understand and master the evolution
of grammars. Furthermore, grammar engineering
mostly concerns the evolution of grammars and
migration of words, but largely ignores the adaptation
of processing tools.

Refactoring: High level programming languages offer fa-
cilities such as methods and classes for abstraction cre-
ation. Since the invariance dilemma also holds for
these abstraction mechanisms, classes and methods too
have to evolve over time to adapt to changes to the vari-
ability / invariance separation. Refactoring is the re-
structuring of programs by “altering its internal struc-
ture without changing its external behavior”[4]. This
limitation of expressiveness allows for a high level of
automation. Several state of the art development en-
vironments such as Eclipse10 implement a number of
refactorings that automate the adaptation of abstraction
instances to changes to abstraction specifications.
Some refactorings, i.e. rename class/method,
introduce/remove parameter [4] can be used
to change the parameters offered by classes and meth-
ods and thus for evolution of variability in abstraction
specifications.
The concept of refactoring has been applied to nu-
merous languages [13] and even to meta models [18].
While refactorings are a help for mastering variability
evolution, they are certainly not sufficient due to their
limited expressiveness.

Feature Model Synchronization: In [7], Kim and Czar-
necki propose an approach to adapt feature configu-
rations to changes to their feature model that can arise
during product line evolution. While they state promis-
ing results for feature model synchronization, they do
not address the problem of tool adaptation.

Language Evolution: In [6] we present the Lever11, a tool
for the evolutionary development of (domain specific)
languages. Lever provides evolution operations on the
language specification level, that automate the migra-
tion of existing words and the adaptation of the com-
piler / generator for the language. Lever is currently
implemented as a research prototype that will be re-
leased beginning of 2007. We believe that many of the

10www.eclipse.org
11Stands for “Language Evolver”

concepts that Lever employs for the evolution of lan-
guages are also applicable for the evolution of other
abstraction mechanisms.
TransformGen [5] is an earlier approach to language
evolution that was developed in the context of syn-
tax directed editors. It cannot deal with arbitrary syn-
tax and ignores the adaptation of language processing
tools, though.

To the best of our knowledge, these approaches consider
the mechanics of evolution of their abstraction mechanisms
in relative isolation. We are not aware of an underlying the-
ory of abstraction or variability evolution. However, we are
convinced that this problem is so fundamental to software
reuse and variability management that it deserves consider-
ation on a general level.

5. Conclusion

The amount of variable and invariant information in an
abstraction specification — independent of the actual ab-
straction mechanism used — determines the reuse benefit
that the creation of an abstraction brings to software devel-
opment. Unfortunately, variability is a two-edged sword:
too much variability results in too low a level of abstraction.
Too little variability on the other hand reduces the number
of times an abstraction can be reused and thus also ruins the
reuse benefit of an abstraction.

The optimal partition between variable and invariant in-
formation can only be determined with respect to all cases
in which an abstraction is to be applied. Since this is impos-
sible in practice — because future use cases are unknown
— abstractions can only achieve optimal reuse benefit, if
they consider the currently known use cases and are adapted
when new use cases arise.

Since the evolution of an abstraction affects its existing
instances and processing tools, evolution of abstractions is
only feasible if the compensational effort is automated to a
high degree. Approaches to automate this compensational
effort have been developed in relative isolation for numer-
ous abstraction mechanisms. These approaches tend to rein-
vent the wheel, since the underlying problem of abstraction
evolution is common among all abstraction mechanisms.
We are convinced, that a unified analysis — across different
abstraction mechanisms — is required to tackle the problem
at its core. We hope that results obtained this way will be
beneficial for many abstraction mechanisms, including the
ones mentioned in this paper.

6 Acknowledgements

The authors would like to thank Birgit Penzenstadler,
Florian Deißenböck, Stefan Wagner and Martin Feilkas for

inspiring discussions on the topic and helpful comments on
the paper.

References

[1] Scott W. Ambler and Pramodkumar J. Sadalage.
Refactoring Databases: Evolutionary Database De-
sign (The Addison-Wesley Signature Series). Addison-
Wesley Professional, 2006.

[2] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and
Henry F. Korth. Semantics and implementation of
schema evolution in object-oriented databases. In SIG-
MOD ’87: Proceedings of the 1987 ACM SIGMOD in-
ternational conference on Management of data, pages
311–322, New York, NY, USA, 1987. ACM Press.

[3] Kajal T. Claypool, Jing Jin, and Elke A. Runden-
steiner. Serf: schema evolution through an extensible,
re-usable and flexible framework. In CIKM ’98: Pro-
ceedings of the seventh international conference on
Information and knowledge management, pages 314–
321, New York, NY, USA, 1998. ACM Press.

[4] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley Profes-
sional, 1999.

[5] David Garlan, Charles W. Krueger, and Barbara Staudt
Lerner. Transformgen: automating the maintenance
of structure-oriented environments. ACM Trans. Pro-
gram. Lang. Syst., 16(3):727–774, 1994.

[6] Elmar Juergens and Markus Pizka. The Language
Evolver Lever - Tool Demonstration. In John Boy-
land and Anthony Sloane, editors, Proceedings of the
Sixth Workshop on Language Descriptions, Tools and
Applications, pages 62–67, 2006.

[7] Chang Hwan Peter Kim and Krzysztof Czarnecki.
Synchronizing cardinality-based feature models and
their specializations. In ECMDA-FA, pages 331–348,
2005.

[8] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward
an engineering discipline for grammarware. ACM
Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

[9] Charles W. Krueger. Software reuse. ACM Comput.
Surv., 24(2):131–183, 1992.

[10] Ralf Lämmel. Grammar Adaptation. In Proc. Formal
Methods Europe (FME) 2001, volume 2021 of LNCS,
pages 550–570. Springer-Verlag, 2001.

[11] Ralf Lämmel. Coupled Software Transformations
(Extended Abstract). In First International Work-
shop on Software Evolution Transformations, Novem-
ber 2004.

[12] Ralf Lämmel and Wolfgang Lohmann. Format Evolu-
tion. In Proc. 7th International Conference on Reverse
Engineering for Information Systems (RETIS 2001),
volume 155 of books@ocg.at, pages 113–134. OCG,
2001.

[13] Tom Mens and Tom Tourwé. A survey of soft-
ware refactoring. IEEE Trans. Softw. Eng., 30(2):126–
139, 2004.

[14] Peter Naur and Brian Randell, editors. Software En-
gineering: Report on a conference sponsored by the
NATO SCIENCE COMMITTEE, Garmisch, Germany,
7th to 11th October 1968. Scientific Affairs Division,
NATO, 1969.

[15] Markus Pizka and Elmar Juergens. Tool Supported
Multi Level Language Evolution. To Appear, 2007.

[16] Stefan Wagner and Florian Deissenboeck. Language
development is software design. To Appear, 2006.

[17] P Wegner. Varieties of reusability. In Workshop on
Reusability in Programming, 1983.

[18] Jing Zhang, Yuehua Lin, and Jeff Gray. Generic
and domain-specific model refactoring using a model
transformation engine.

