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Abstract  

One of the main goals of domain-specific languages is to enable the developer to define 
completely new languages for special domains in order to get the advantages of programming 
on a higher level of abstraction. Nowadays languages are represented in different ways: by 
metamodels specified in some data modelling technique or by formal grammars. This 
position paper examines the influence of the representation of languages on language 
construction and transformation.  
 
Introduction 

In the last few years domain-specific languages (DSL) have been getting more and more 
attention in the software industry. DSLs could be a technique to develop software in shorter 
time and in better quality. DSLs promise to be a good solution to the problem of reuse not 
only on technical but also on architectural and design level. The usual way of handling this 
kind of reuse is the adoption of design or architecture patterns. DSLs can be seen as 
executable patterns. DSLs and generative techniques give the chance of defining the 
variability in specific software domains. Best practices, such as patterns, can be included as 
static parts in the generators and variable parts of a software system can be specified in some 
kind of model or language [GP]. Thus, DSLs present new perspectives on the development of 
software product lines. 
 
But DSL development is still hard because domain and language development knowledge are 
required [WaH]. To make a DSL usable three tasks have to be carried out:  
 

• Definition of an abstract syntax 
Most DSL-tools (also called language workbenches [LW]) allow the definition of the 
abstract syntax as a metamodel [MOF]. This metamodel is defined by a data 
modelling technique (the meta-metamodel) similar to class diagrams or ER-diagrams.  

 

• Definition of a concrete syntax 
To make the language usable some concrete syntax has to be defined. Many language 
workbenches like the Microsoft DSL-Tools focus on graphical languages [MSDT, 
SWF]. For every language element there has to be a graphical icon that represents the 
abstract model element. Finally some kind of development environment needs to be 
provided. In the case of textual languages the syntax can be described by a grammar. 
A grammar describes both concrete and abstract syntax by specifying terminals, non-
terminals and production rules.  

 

• Definition of semantics 
Possibly the most important part of language specification is the formulation of 
semantics. An informal description of the language may be given in natural language 
by describing the domain itself. But the actual definition of these semantics is done by 
implementing the generator backend. Thus, the semantics of the DSL is defined by 
giving a translation (translational semantics) into some target language which already 
has some behaviour definition for its elements (operational semantics).  

 
The generator backend is most often realized by one of the following three kinds of 
approaches [LOP]:  
 



� Templates 
The most preferred approach to code-generation in language workbenches is the use 
of template techniques. As the name suggests code-files in the target language are the 
basis. Expressions of a macro language are inserted that specify the generator 
instructions. Often ordinary programming languages are used to specify the behaviour 
of the generator, e.g. C# in the Microsoft DSL-Tools [MSDT]. Other template 
languages like openArchitectureWare’s functional Xpand language [oAW] specify a 
specific path through the model graph in each template by using recursion.  

 

� Patterns 
This approach allows specifying a search pattern on the model graph. For every match 
a specific output is generated. This approach is used in BOTL [Botl1, Botl2] or ATL 
[ATL03]. 

 

� Graph-traversing (visitor approach) 
This kind of code generation approach specifies a predetermined iteration path over 
the syntax graph. For every node type, generation instructions are defined which are 
executed every time such a node is passed. This kind of generation approach is mainly 
used in classical compiler construction and textual languages.  

 
Most language workbenches offer poor assistance for the specification of the generator back-
ends. Ordinarily there are only little syntax-highlighting (only for the generator language but 
not for the target language) or code-completion features. The reason lies in the independency 
of the generator backend from the target language and the missing definition of the target 
language.  
 
Today many languages are developed that are incomplete in the sense that manual coding is 
still needed to get an executable program. The adoption of DSL technologies is useful 
especially when the target code doesn’t need to be touched after generation. Otherwise the 
developer using the DSL must still have full knowledge of the platform and the architecture 
of the generated code. In this case the benefits of the DSL’s higher level of abstraction don’t 
really take effect. In the early days of compiler construction generated machine code was also 
manually modified. This inconvenient practice was no longer necessary when the 
optimization techniques evolved in compiler construction. The same effect will probably take 
place when DSL techniques are further developed. But nowadays the reasons for manual 
coding in generated code are not performance issues but the difficulty to specify languages 
that are capable of expressing more than architectural and design decisions (like component 
or service structures). It would often be useful to be able to write logical or arithmetical 
expressions in a DSL. But it is cumbersome to specify this in a metamodel. Such common 
language constructs would be useful in many domains so the demand for reuse of language 
concepts arises. Manual modifications in generated code should be forbidden not only 
because of convenience reasons. It is a prejudice that generated code is less maintainable than 
hand written code. Manual interference may possibly destroy the architectural decisions 
specified in the DSL and its generator. Also, some typical technical round-tripping problems 
[RTE] could be avoided. For example, manually written code is lost when the generator 
needs to be run again due to changes of the model. Common solutions to this problem often 
lead to poor designs and bad program structures because of the inappropriate use of the target 
language’s concepts (e.g. inheritance). This problem becomes obsolete if complete code 
could be generated out of DSL specifications. 
 
In most language workbenches graphical languages are formulated as data models as the 
metamodelling technique of the workbench. These are usually simplified class diagrams or 
entity-relationship models (ER-models). In the vocabulary of the Meta Object Facility [MOF] 



this would be the meta-metamodel. Textual languages on the other hand are usually defined 
by their grammar, e.g. in Backus-Naur-Form (BNF).  
 
The next section will compare these different representations of languages. Class diagrams 
can easily be transformed into ER-diagrams. Due to that we will not distinguish between 
these data modelling techniques anymore and only talk about ER-modelling and relational 
models in the next sections. After that we will describe the effects of a uniform meta-
metamodel on the generation and transformation techniques. At last we want to address the 
composition of languages out of language components. 
 
Data Modelling vs. Grammars 

As mentioned above the big difference between classical compiler construction and language 
workbenches is the formulation of the metamodel. Compilers use formal languages whereas 
generators use ER-models. The problems compiler construction is facing arise because of the 
linearity of text. It is difficult to encode and decode information into a linear representation 
(parsing). Recognizing and reconstructing the information which is encoded into text makes 
it necessary for every compiler to solve the word problem to decide whether a given program 
is syntactically correct and in order to reconstruct what the programmer had in mind when 
writing the program.  
 
An interesting question concerns which is the better or more expressive way of formulating 
metamodels. We will examine this topic using a small example. Figure 1 shows a simplified 
part of an abstract syntax tree of an ordinary imperative language.  
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Figure 1: A simplified abstract syntax tree 
 
This simple example shows the definition and the use of identifiers. An ER-schema whose 
stored data represents the same information as the syntax tree (without the context sensitive 
rules) would look like this:  
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Figure 2: An ER-model as a metamodel for the syntax tree in Figure 1 



 
But a better way of expressing all the information needed for the concept of usage and 
declaration of identifiers would be the following: 

 
This shows a simple example of the weaknesses of compiler construction: It is impossible to 
express all the information needed in context free grammars. In almost every (non-trivial) 
language there are context sensitive rules that must be integrated and checked by manually 
coding the compiler. A similar example would be the definition of interfaces in Java or C#. If 
a class implements an interface it has to implement all the methods declared in this interface. 
This rule is also context-sensitive and cannot be expressed in a BNF notation of these 
programming languages. In every case where information (identifiers or method-signatures) 
is specified more than once in programs a relational structure can be found that eliminates 
this redundancies and expresses both, the information within the syntax tree and the context-
sensitive information. This is possible because a database schema is not only capable of 
storing trees but also universal graph structures (with typed nodes).  
 
The presence of context-sensitive rules of course lowers the maintainability of the compiler. 
Using context sensitive grammars is not possible either, because they are not easy to handle 
and the word problem (check if a given word is part of a language) cannot be solved 
efficiently. The examples above already show the assumption that ER-models are more 
expressive than context free grammars. But the expressiveness of ER-models is limited, too. 
In the second example (interface implementation) there could also be the restriction that the 
interface-methods implemented by the class must be declared as public. This exceeds the 
expressive power of ER-modelling and constraints formulated in predicate logic would be 
needed.  
 
Our goal is to define a way to translate context-free grammars into ER-schemata and 
optimize them towards the context-sensitive rules. By using normal form theory we will try 
to find a way to store programs without redundancy. More research is needed to formalize 
this topic. Further work will discuss this in more detail. Now we want to have a look at the 
advantages that could possibly be gained by using a relational representation of a language.  
 
Benefits of relational metamodels 

Keeping these advantages of data-modelling compared to grammar-based definition of 
languages in mind, the question arises if this technique could also be used in ordinary 
programming languages. The formulation of a programming language as an ER-schema and 
the storage of programs in a relational database would demand an extra definition of concrete 
syntax in a textual or graphical way.  
 
Formulating languages as relational data schemata can make the use of a parser unnecessary 
because the programs would directly be stored as abstract syntax graphs and the construction 
of the program could be done syntax-driven. If a graphical program representation is 
preferred, the operations of dragging and dropping language elements onto the drawing board 
have to take care that either no incorrect models can be produced or at least that no incorrect 
model can be stored or executed by the generator backend. In the case of a textual 
representation of the programs ordinary parsing-techniques may be used before storing the 
abstract syntax graph or structured editors could be applied like it is done in the Meta 
Programming System [LOP]. Programming in this kind of relationally represented language 
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Figure 3: An ER-diagram representing the declaration and usage of identifiers 



would at last be a sequence of insert, update and delete operations whereas DSL composition 
would be done using add, alter and drop table operations.  
 
Another advantage of storing programs in a relational format is much easier refactoring. For 
example, in a conventional programming language, a simple renaming of a method 
declaration would cause the programmer to identify and consistently change all of the usages 
of this method. This phenomenon is comparable to update anomalies known in database 
theory. In an ER-schema of a programming language, a method call could be realized by 
references (numeric primary key) without storing the method name twice [Sim06, Sim96].  
 
Versioning systems (like CVS, Subversion) work on simple pattern matching practices and 
are unable to identify the reason of conflicts. With ER-based programming languages merge 
conflicts could be solved much more easily because the versioning system has all the details 
necessary to determine the exact reason for the conflict. Not only differences in the text lines 
can be shown, but detailed information on what the differences really rely on (e.g. a new 
method is declared or an old one has been moved). The developer could be informed of 
conflicts in a much more detailed way and do a kind of “semantic merge” [LW, Sim06, 
Sim96]. It is no longer possible to destroy the syntactic correctness of the code base by doing 
merging operations. Even scenarios are imaginable where developers work synchronously on 
the same copy of code stored in a central database. For every statement the author could be 
stored. Two developers would immediately notice when working on the same piece of code. 
This could avoid merge conflicts totally.  
 
Data modelling is much easier than dealing with grammars. Software engineers are usually 
experienced at building data models. One of the main ideas behind DSLs is to give the 
programmer the ability to modify his own tool, the programming language. Compiler 
construction know-how is not very common in average software companies but if the 
modification of a language could be done via simply changing a relational schema this idea 
would get better acceptance. Some simple modification could be the implementation of 
company specific coding conventions by restricting the programming language used.  
 
Model Transformation 

After this reasoning about the way of defining metamodels, these observations should now be 
examined towards their influence on the generator backends and model transformation 
capabilities. DSL-workbenches generate just plain unstructured text, and it is not ensured, 
that the generator output really fits the grammar of the target language. The used generation 
techniques do not respect the target language syntax (respectively its metamodel). A formal 
mapping between the source and target language elements is very important because it 
specifies the semantics of a newly developed DSL. If not every word in the new language can 
be translated into an equivalent and syntactical correct target language word, how is the 
semantic of these words defined? In our opinion the semantics of DSLs must be specified as 
translational semantics. This leads to the need for syntax respecting code generation. By 
specifying a translation to a target language that has operational semantics a newly developed 
language implicitly gets a formal definition of its own semantics.  
 
To ensure the syntactical correctness of the output of a transformation it would be necessary 
to define a separate transformation language for every pair of source and target language. 
Such a transformation language would consist of the syntax definitions of the source and the 
target language and some language elements needed to be able to define the mapping. The 
synthesis of such a transformation language is always the same process and could therefore 
be automated.  
 



Usually people distinguish between model-to-code and model-to-model transformations. One 
of the difficulties in syntax-respecting model-to-code transformations relies on the different 
representations of models and code. Models are usually defined relationally and code by its 
underlying grammar. Actually four kinds of transformations should be distinguished: 

1. ER-defined language to Grammar defined language 
2. ER-defined language to ER-defined language 
3. Grammar defined language to Grammar defined language 
4. Grammar defined language to ER-defined language 

 
If a language workbench would have a (relational) representation of a target language (e.g. a 
3rd generation programming language) then the task of model-to-code generation could be 
treated equally to model-to-model transformations and techniques like ATL [ATL03] or QVT 
[QVT] could be applied. Several other concepts for model-to-model transformations have 
been submitted to the QVT request for proposals of the OMG [QVTr]. 
 
But these model-to-model transformation techniques have a different methodology than 
template based code generation. It is questionable if these would really fit the needs because 
most examples of model-to-model transformations just show transformations between models 
that have almost the same level of abstraction. Code generation on the other hand often has to 
deal with a huge gap between the levels of abstraction of the source and target language.  
 
Component c � insert Java-Class(Name = c.Name, Visibility = public ) jc { 

insert Constructor(Name = jc.Name);

Port (Type == "sender")  p  � insert Method(Name = c.Name+"_"+p.Name){…};
Port (Type == "receiver") p � insert Method(Name = c.Name+"_"+p.Name){…}, 

insert Method(Name = "CS"+c.Name+"_"+p.Name){…},
insert Attribute(Name = "isCalled_"+p.Name, Type = b oolean);

DataElement d � GenAttr;
}

GenAttr : DataElement d � insert Attribute(Name = d.Name, Type = string);

 
Figure 4: Example of a fictitious transformation language 

 
The example for a transformation language illustrated in Figure 4 can be read equally to 
ordinary template approaches and is inspired by the Xpand language used in 
openArchitectureWare [oAW]. The left hand side of the transformation rules can be thought 
of as model elements over which is iterated in a for-each-loop and the right hand side as the 
body of the loop which ordinarily generates the textual output. The right hand side specifies 
the abstract syntax elements that should be inserted into the target model when the rule is 
executed.  
 
In contrast to approaches like ATL [ATL03], this kind of transformation is traversal based 
rather than pattern based. The transformation specifies a spanning-tree in the syntax graph of 
both the source and the target language, which is constructed by the right hand side of the 
transformation rules. So the transformation can be executed as a depth-first search over the 
abstract syntax graph of the source language word and at every node parts of the abstract 
syntax graph of the target language word are constructed. A real complex transformation may 
need several of these passes. An important thing about the specification of the transformation 
is that it is done in a declarative manner. Unlike text generation the transformation doesn’t 
create a concrete syntax representation of the resulting target language word but its abstract 
syntax graph.  
 



This transformation language is composed out of the source and target language and elements 
for defining the transformations. It is very context-sensitive because the transformation rules 
have to take care of the source and target language syntax and mapping constraints. But if it 
can be shown that a word is in the transformation language, this word is a complete definition 
of translational semantics for the source language.  
 
Especially in cases where the source and target languages have a huge difference in their 
level of abstraction the transformation language in this example is not very useful, because 
many target elements have to be generated from single source elements and the 
transformation gets very hard to read. Ordinary templates have the advantage that the 
concrete syntax of the target language gives a good impression of what generator output is to 
be expected [PTM]. The example of the textual transformation language above is just meant 
to show in which manner transformations should be expressed. Of course the transformation 
language itself could (just as every other language) be represented as an ER-schema and a 
good GUI-concept could ease the task of specifying transformations by offering only the 
appropriate elements like code completion does in modern IDEs.  
 
The definition of the semantics of the transformation language itself can be defined in a 
bootstrapping way by formulating a transformation from the transformation language to a 
programming language (with operational semantics) in the transformation language.  
 
Language Composition 

One of the big goals of this approach to code generation/model transformation is to make it 
possible to identify the dependencies between target elements and source elements to identify 
free elements. In the example the DataElement that corresponds to the attribute doesn’t need 
information (fields) of the component in whose context it is generated. You can say that in 
this simple example the DataElement concept is independent of the component concept.  
 
This could be a first conceptual step toward a composition of languages in a building blocks 
approach. By introducing new blocks of an existing language (e.g. arithmetic expressions) 
into a new language, all of the transformation rules that do not depend on other elements of 
the existing language can be taken over into the generator of the new language. So this is an 
approach to semantic conserving DSL-composition. Through similar concepts the 
development of complete DSLs can be done with less effort.  
 
Conclusion and further work 

In this position paper we have shown a new perspective on the differences between models 
and code. The main difference lies in the representation of their metamodels by relations or 
grammars. After that we explained what advantages could be expected, if ordinary 
programming languages are formulated as relational models. Translations between 
relationally represented languages have been proposed and discussed towards the goal of 
developing transformations that verify the syntactical correctness of the target words. This 
kind of transformation could also be an exact definition of the (translational) semantics of a 
newly developed language.  
 
In the future we will work on an implementation of a relational programming IDE with a 
transformation language like the one presented. It has to be formally shown where relational 
modelling is situated in the Chomsky hierarchy.  
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