How to represent M odels, L anguages and Transfor mations?

Martin Feilkas
Technische Universitat Miinchen
feilkas@in.tum.de

Abstract

One of the main goals of domain-specific languaige® enable the developer to define
completely new languages for special domains ieotal get the advantages of programming
on a higher level of abstraction. Nowadays langsage represented in different ways: by
metamodels specified in some data modelling tecknigr by formal grammars. This

position paper examines the influence of the regpredion of languages on language
construction and transformation.

I ntroduction

In the last few years domain-specific languagesL(Di&ave been getting more and more
attention in the software industry. DSLs could beechnique to develop software in shorter
time and in better quality. DSLs promise to be adyesolution to the problem of reuse not
only on technical but also on architectural andgretevel. The usual way of handling this
kind of reuse is the adoption of design or archiber patterns. DSLs can be seen as
executable patterns. DSLs and generative technigivws the chance of defining the
variability in specific software domains. Best gregs, such as patterns, can be included as
static parts in the generators and variable pdréssoftware system can be specified in some
kind of model or language [GP]. Thus, DSLs present perspectives on the development of
software product lines.

But DSL development is still hard because domauhlanguage development knowledge are
required [WaH]. To make a DSL usable three taske ha be carried out:

» Definition of an abstract syntax
Most DSL-tools (also called language workbenchad])Lallow the definition of the
abstract syntax as a metamodel [MOF]. This metamledefined by a data
modelling technique (the meta-metamodel) similacléss diagrams or ER-diagrams.

» Definition of a concrete syntax
To make the language usable some concrete synsato ee defined. Many language
workbenches like the Microsoft DSL-Tools focus omghical languages [MSDT,
SWEF]. For every language element there has todraghical icon that represents the
abstract model element. Finally some kind of degwelent environment needs to be
provided. In the case of textual languages theasyoan be described by a grammar.
A grammar describes both concrete and abstractsyoyt specifying terminals, non-
terminals and production rules.

» Definition of semantics
Possibly the most important part of language smation is the formulation of
semantics. An informal description of the languatgy be given in natural language
by describing the domain itself. But the actuaimgbn of these semantics is done by
implementing the generator backend. Thus, the skesaof the DSL is defined by
giving a translation (translational semantics) istone target language which already
has some behaviour definition for its elements (af@nal semantics).

The generator backend is most often realized by @ne¢he following three kinds of
approaches [LOP]:

= Templates

The most preferred approach to code-generatioarigdage workbenches is the use
of template techniques. As the name suggests cledeif the target language are the
basis. Expressions of a macro language are inséhi@d specify the generator
instructions. Often ordinary programming languagesused to specify the behaviour
of the generator, e.g. C# in the Microsoft DSL-BJMSDT]. Other template
languages like openArchitectureWare’s functionabXg language [0AW] specify a
specific path through the model graph in each tatedby using recursion.

= Patterns
This approach allows specifying a search patterthermodel graph. For every match
a specific output is generated. This approachesl iis BOTL [Botll, Botl2] or ATL
[ATLO3].

= Graph-traversing (visitor approach)
This kind of code generation approach specifieseglgtermined iteration path over
the syntax graph. For every node type, generatistilictions are defined which are
executed every time such a node is passed. Thisdtigeneration approach is mainly
used in classical compiler construction and textamuages.

Most language workbenches offer poor assistancthéspecification of the generator back-
ends. Ordinarily there are only little syntax-highting (only for the generator language but
not for the target language) or code-completiotuies. The reason lies in the independency
of the generator backend from the target languagktlae missing definition of the target
language.

Today many languages are developed that are inetenpl the sense that manual coding is
still needed to get an executable program. The tamof DSL technologies is useful
especially when the target code doesn’t need tobehed after generation. Otherwise the
developer using the DSL must still have full knogide of the platform and the architecture
of the generated code. In this case the benefitiseoDSL’s higher level of abstraction don’t
really take effect. In the early days of compilenstruction generated machine code was also
manually modified. This inconvenient practice wase fonger necessary when the
optimization techniques evolved in compiler constinn. The same effect will probably take
place when DSL techniques are further developed. ®dwadays the reasons for manual
coding in generated code are not performance idsuiethe difficulty to specify languages
that are capable of expressing more than archredcamd design decisions (like component
or service structures). It would often be usefulbt able to write logical or arithmetical
expressions in a DSL. But it is cumbersome to $pehis in a metamodel. Such common
language constructs would be useful in many domsanthe demand for reuse of language
concepts arises. Manual modifications in generatede should be forbidden not only
because of convenience reasons. It is a prejudategenerated code is less maintainable than
hand written code. Manual interference may possd#gtroy the architectural decisions
specified in the DSL and its generator. Also, saypecal technical round-tripping problems
[RTE] could be avoided. For example, manually writtcode is lost when the generator
needs to be run again due to changes of the mBdeimon solutions to this problem often
lead to poor designs and bad program structuresusecf the inappropriate use of the target
language’s concepts (e.g. inheritance). This problecomes obsolete if complete code
could be generated out of DSL specifications.

In most language workbenches graphical languagedoamulated as data models as the
metamodelling technique of the workbench. Theseuartally simplified class diagrams or
entity-relationship models (ER-models). In the \mdary of the Meta Object Facility [MOF]

this would be the meta-metamodel. Textual languagethe other hand are usually defined
by their grammar, e.g. in Backus-Naur-Form (BNF).

The next section will compare these different repr¢ations of languages. Class diagrams
can easily be transformed into ER-diagrams. Duéh#& we will not distinguish between
these data modelling techniques anymore and oiityataout ER-modelling and relational
models in the next sections. After that we will dédse the effects of a uniform meta-
metamodel on the generation and transformatiomtgaks. At last we want to address the
composition of languages out of language components

Data Modelling vs. Grammars

As mentioned above the big difference between idalssompiler construction and language
workbenches is the formulation of the metamodeim@iters use formal languages whereas
generators use ER-models. The problems compilestaartion is facing arise because of the
linearity of text. It is difficult to encode and d®e information into a linear representation
(parsing). Recognizing and reconstructing the imfation which is encoded into text makes
it necessary for every compiler to solve the wambfem to decide whether a given program
is syntactically correct and in order to recondtnrbat the programmer had in mind when
writing the program.

An interesting question concerns which is the baitemore expressive way of formulating
metamodels. We will examine this topic using a $mehmple. Figure 1 shows a simplified
part of an abstract syntax tree of an ordinary mapeée language.

Statement_Block

Declaration Declaration Declaration

context sensitive rules

Figure 1. A ssimplified abstract syntax tree

This simple example shows the definition and the ofidentifiers. An ER-schema whose
stored data represents the same information asytiitex tree (without the context sensitive
rules) would look like this:

Statement_Block

1 1
n n
Declaration Expression
1 1
n n
Identifier Identifier

Figure 2. An ER-model as a metamodel for the syntax treein Figure 1

But a better way of expressing all the informatioeeded for the concept of usage and
declaration of identifiers would be the following:

] 1 N — n -
Declaration " Identifier || Expression

Figure 3: An ER-diagram representing the declaration and usage of identifiers

This shows a simple example of the weaknessesrpiber construction: It is impossible to
express all the information needed in context fye@mmars. In almost every (non-trivial)
language there are context sensitive rules that bigntegrated and checked by manually
coding the compiler. A similar example would be ti&inition of interfaces in Java or C#. If
a class implements an interface it has to implerattrthe methods declared in this interface.
This rule is also context-sensitive and cannot keressed in a BNF notation of these
programming languages. In every case where infeomgtdentifiers or method-signatures)
is specified more than once in programs a relakistracture can be found that eliminates
this redundancies and expresses both, the infosmatithin the syntax tree and the context-
sensitive information. This is possible becauseatalthse schema is not only capable of
storing trees but also universal graph structuséth ¢yped nodes).

The presence of context-sensitive rules of cowrseis the maintainability of the compiler.
Using context sensitive grammars is not possilileegi because they are not easy to handle
and the word problem (check if a given word is pairta language) cannot be solved
efficiently. The examples above already show thsumption that ER-models are more
expressive than context free grammars. But theesspreness of ER-models is limited, too.
In the second example (interface implementatioajeltould also be the restriction that the
interface-methods implemented by the class mustldmared as public. This exceeds the
expressive power of ER-modelling and constraintsnfdated in predicate logic would be
needed.

Our goal is to define a way to translate contegefrgrammars into ER-schemata and
optimize them towards the context-sensitive ruBasusing normal form theory we will try
to find a way to store programs without redundarMdygre research is needed to formalize
this topic. Further work will discuss this in madetail. Now we want to have a look at the
advantages that could possibly be gained by usnhetational representation of a language.

Benefits of relational metamodels

Keeping these advantages of data-modelling comp&medrammar-based definition of
languages in mind, the question arises if this negke could also be used in ordinary
programming languages. The formulation of a prognamg language as an ER-schema and
the storage of programs in a relational databasédremand an extra definition of concrete
syntax in a textual or graphical way.

Formulating languages as relational data schenzatanake the use of a parser unnecessary
because the programs would directly be stored stsaaib syntax graphs and the construction
of the program could be done syntax-driven. If apfical program representation is
preferred, the operations of dragging and dropfanguage elements onto the drawing board
have to take care that either no incorrect modatsbe produced or at least that no incorrect
model can be stored or executed by the generatokehd. In the case of a textual
representation of the programs ordinary parsingsiegies may be used before storing the
abstract syntax graph or structured editors cow@dapplied like it is done in the Meta
Programming System [LOP]. Programming in this kafdelationally represented language

would at last be a sequence of insert, update alededoperations whereas DSL composition
would be done using add, alter and drop table dpesa

Another advantage of storing programs in a relalidormat is much easier refactoring. For
example, in a conventional programming languagesimple renaming of a method
declaration would cause the programmer to idemtifgt consistently change all of the usages
of this method. This phenomenon is comparable tatg anomalies known in database
theory. In an ER-schema of a programming languageethod call could be realized by
references (numeric primary key) without storing thethod name twice [Sim06, Sim96].

Versioning systems (like CVS, Subversion) work anme pattern matching practices and
are unable to identify the reason of conflicts. M#R-based programming languages merge
conflicts could be solved much more easily becdhseversioning system has all the details
necessary to determine the exact reason for thiéiatoMot only differences in the text lines
can be shown, but detailed information on what dliferences really rely on (e.g. a new
method is declared or an old one has been movéd®.dEveloper could be informed of
conflicts in a much more detailed way and do a kifid'semantic merge” [LW, SimO6,
Sim96]. It is no longer possible to destroy thetagtic correctness of the code base by doing
merging operations. Even scenarios are imaginabrevdevelopers work synchronously on
the same copy of code stored in a central databasesvery statement the author could be
stored. Two developers would immediately notice niwrking on the same piece of code.
This could avoid merge conflicts totally.

Data modelling is much easier than dealing withrgrears. Software engineers are usually
experienced at building data models. One of thennideas behind DSLs is to give the
programmer the ability to modify his own tool, tipogramming language. Compiler

construction know-how is not very common in averagdtware companies but if the

modification of a language could be done via simgignging a relational schema this idea
would get better acceptance. Some simple modifinatould be the implementation of

company specific coding conventions by restrictimg programming language used.

Model Transformation

After this reasoning about the way of defining maddels, these observations should now be
examined towards their influence on the generamckénds and model transformation
capabilities. DSL-workbenches generate just plaistuctured text, and it is not ensured,
that the generator output really fits the gramnfathe target language. The used generation
techniques do not respect the target languagesyrgapectively its metamodel). A formal
mapping between the source and target languageeptsnis very important because it
specifies the semantics of a newly developed DShotl every word in the new language can
be translated into an equivalent and syntacticatect target language word, how is the
semantic of these words defined? In our opinionsém@antics of DSLs must be specified as
translational semantics. This leads to the needsymtax respecting code generation. By
specifying a translation to a target language hiagtoperational semantics a newly developed
language implicitly gets a formal definition of igvn semantics.

To ensure the syntactical correctness of the outpattransformation it would be necessary

to define a separate transformation language feryepair of source and target language.
Such a transformation language would consist oktirgax definitions of the source and the

target language and some language elements neededable to define the mapping. The

synthesis of such a transformation language isyawlae same process and could therefore
be automated.

Usually people distinguish between model-to-cod# rmndel-to-model transformations. One
of the difficulties in syntax-respecting model-tode transformations relies on the different
representations of models and code. Models ardlysiefined relationally and code by its
underlying grammar. Actually four kinds of transfations should be distinguished:

1. ER-defined language to Grammar defined language

2. ER-defined language to ER-defined language

3. Grammar defined language to Grammar defined larguag

4. Grammar defined language to ER-defined language

If a language workbench would have a (relationgpresentation of a target language (e.g. a
3 generation programming language) then the tastadel-to-code generation could be
treated equally to model-to-model transformatiomd #chniques like ATL [ATLO3] or QVT
[QVT] could be applied. Several other concepts rfardel-to-model transformations have
been submitted to the QVT request for proposate@OMG [QVTr].

But these model-to-model transformation technighase a different methodology than
template based code generation. It is questionatilese would really fit the needs because
most examples of model-to-model transformationsghew transformations between models
that have almost the same level of abstractione@mheration on the other hand often has to
deal with a huge gap between the levels of abstraof the source and target language.

Componentc - insert Java-Class(Name = c.Name, Visibility = public)jc {

insert Constructor(Name = jc.Name);

Port (Type == "sender") p - insert Method(Name = c.Name+" "+p.Name){...};
Port (Type == "receiver") p — insert Method(Name = c.Name+"_"+p.Name}X{...},
insert Method(Name = "CS"+c.Name+"_"+p.Name){...},
insert Attribute(Name = "isCalled_"+p.Name, Type = b oolean);

DataElement d — GenAttr;
}

GenAttr : DataElement d — insert Attribute(Name = d.Name, Type = string);

Figure 4. Example of afictitious transfor mation language

The example for a transformation language illusttain Figure 4 can be read equally to
ordinary template approaches and is inspired by Mmand language used in
openArchitectureWare [0AW]. The left hand side lodé transformation rules can be thought
of as model elements over which is iterated inreefich-loop and the right hand side as the
body of the loop which ordinarily generates thetdek output. The right hand side specifies
the abstract syntax elements that should be irtsénte the target model when the rule is
executed.

In contrast to approaches like ATL [ATLO3], thisnkii of transformation is traversal based

rather than pattern based. The transformation gea@ spanning-tree in the syntax graph of
both the source and the target language, whiclonstoucted by the right hand side of the

transformation rules. So the transformation carexecuted as a depth-first search over the
abstract syntax graph of the source language woddaa every node parts of the abstract
syntax graph of the target language word are coctstr. A real complex transformation may

need several of these passes. An important thiogtabe specification of the transformation

is that it is done in a declarative manner. Unlié&et generation the transformation doesn’t
create a concrete syntax representation of thdtirestarget language word but its abstract
syntax graph.

This transformation language is composed out okthece and target language and elements
for defining the transformations. It is very corttegnsitive because the transformation rules
have to take care of the source and target langsygeax and mapping constraints. But if it
can be shown that a word is in the transforma@mgliage, this word is a complete definition
of translational semantics for the source language.

Especially in cases where the source and targguéages have a huge difference in their
level of abstraction the transformation languagéhia example is not very useful, because
many target elements have to be generated fromlesisgurce elements and the
transformation gets very hard to read. Ordinary plates have the advantage that the
concrete syntax of the target language gives a goptession of what generator output is to
be expected [PTM]. The example of the textual tiamsation language above is just meant
to show in which manner transformations should xjgressed. Of course the transformation
language itself could (just as every other langudgerepresented as an ER-schema and a
good GUI-concept could ease the task of specifyragsformations by offering only the
appropriate elements like code completion doesadem IDESs.

The definition of the semantics of the transform@atianguage itself can be defined in a
bootstrapping way by formulating a transformatiooni the transformation language to a
programming language (with operational semanticshe transformation language.

L anguage Composition

One of the big goals of this approach to code gaim#’model transformation is to make it

possible to identify the dependencies between taigenents and source elements to identify
free elements. In the example the DataElementcibraesponds to the attribute doesn’'t need
information (fields) of the component in whose @xttit is generated. You can say that in
this simple example the DataElement concept ispaddent of the component concept.

This could be a first conceptual step toward a amitipn of languages in a building blocks
approach. By introducing new blocks of an existiagguage (e.g. arithmetic expressions)
into a new language, all of the transformation suleat do not depend on other elements of
the existing language can be taken over into tmegdor of the new language. So this is an
approach to semantic conserving DSL-composition.rodiggh similar concepts the
development of complete DSLs can be done withdésst.

Conclusion and further work

In this position paper we have shown a new pergfeoh the differences between models
and code. The main difference lies in the reprediemt of their metamodels by relations or
grammars. After that we explained what advantagesldc be expected, if ordinary
programming languages are formulated as relatiomaldels. Translations between
relationally represented languages have been pedpasd discussed towards the goal of
developing transformations that verify the syntadticorrectness of the target words. This
kind of transformation could also be an exact defin of the (translational) semantics of a
newly developed language.

In the future we will work on an implementation afrelational programming IDE with a
transformation language like the one presentedadtto be formally shown where relational
modelling is situated in the Chomsky hierarchy.

Refer ences:

[ATLO3]J. Bézivin, G. Dupé, F. Jouault, and JR®ugui. First experiments with the ATL
model transformation language: Transforming XSL{b iKQuery. In the online
proceedings of the OOPSLA’03 Workshop on Generdieehniques in the
Context of the MDA, www.softmetaware.com/oopsla2e@a-workshop.html.

[Botll] P. Braun, F. Marschall: Transforming objeciented models with BOTL,
Electronic Notes in Theoretical Computer ScienceZi®3.

[Botl2] F. Marschall, P. Braun: Model Transformatsofor the MDA with BOTL,
Univeristy of Twente, 2003.

[GP] K. Czarnecki, U. Eisenecker: Generative Paagning, Addison Wesley, 2000.

[LOP] S. Dmitriev. Language oriented programmingeThext programming paradigm.
Onboard Magazine, www.onboard.jetbrains.com/isitlag/04/10/lop/index.html,
November 04.

[LW] M. Fowler: Language Workbenches: The Killer4\for Domain Specific
Languages?, www.martinfowler.com/articles/languageivench.html, Jun 05.

[ML] A. Gerber, M. Lawley, K. Raymond, J. Steel, Wood: Transformation: The
missing link of MDA, In A. Corradini, H. Ehrig, Hl- Kreowski, and G. Rozenberg,
editors, Proc. Graph Transformation - First Intéorel Conference, ICGT 2002.

[MOF] Object Management Group: Meta-Object Faci{iffOF™) Version 2.0,
www.omg.org/technology/documents/modeling_spec legtatm#MOF.

[MSDT] Microsoft DSL-Tools, http://msdn.microsofam/vstudio/DSLTools, August 06.

[MTA] K. Czarnecki, S. Helsen: Classification of i@l Transformation Approaches. In
Proceedings OOPSLA Workshop on Generative Techsiguthe Context of
Model-Driven Architecture, 2003.

[0OAW] Open ArchitectureWare, Generator Framewongwwpenarchitectureware.org.

[PTM] J.van Wijngaarden, E. Visser: Program Transiation Mechanics: A classification
of Mechanisms for Program Transformation with av®wrof Existing
Transformation Systems, May 2003.

[QVT] Object Management Group: MOF QVT Final Adoptgpecification, July 7, 2006,
www.omg.org/docs/ptc/05-11-01.pdf.

[QVTr] Object Management Group: 2.0 Query / Viewlsdnsformations RFP, April 24,
2002, www.omg.org/docs/ad/02-04-10.pdf.

[RTE] S. Sendall and J. Kuster: Taming Model RoUmig Engineering. In Proceedings of
Workshop 'Best Practices for Model-Driven Softwarevelopment’, Vancouver,
Canada, October 2004.

[Sim06] Ch. Simonyi, M. Christerson, S. Clifforditéntional Software. Proceedings of
OOPSLA'06, 2006.

[Sim96] Ch. Simonyi, Intentional Programming - Iwadion in the Legacy Age. Presented at
IFIP WG 2.1 meeting, June 4, 1996.

[SWF] J. Greenfield et al.: Software Factories:&mabling Applications with Patterns,
Models, Frameworks and Tools. John Wiley & Sons, 04

[WaH] M. Mernik, J. Heering, A. M. Sloane: When addw to Develop Domain-Specific
Languages, ACM Computing Surveys, Vol. 37, No. Bc@mber 2006.

