
A Unified Meta-Model for
Concept-Based Reverse Engineering

Florian Deissenboeck and Daniel Ratiu

Institut für Informatik, Technische Universität München
Boltzmannstr. 3, D-85748 Garching b. München, Germany

{deissenb|ratiu}@in.tum.de

Abstract. While programming is modeling the reality, reverse engineer-
ing is concerned with recovering it from the code. Parts of this reality
can be formalized as concepts and relations among them. As previous
research suggests, the identification of these concepts is a key issue in
automating program analysis. Their central role requires advance re-
verse engineering tasks to consider them first-class citizens. In this paper
we unify the classical, structure-based reverse engineering meta-models
with a meta-model describing concepts and their relations. Our unified
meta-model establishes an explicit mapping between concepts and their
implementations in a program. Instances of the meta-model are built
in a semi-automatic manner by analyzing the program’s identifiers. Us-
ing this model allows us to raise the abstraction level by viewing the
program from the perspective of concepts it implements. This enables a
higher degree of automation in the reverse engineering endeavor.

1 Introduction

One of the most frequently cited definitions of reverse engineering is:

Reverse engineering is the process of analyzing a subject system to
1. identify the system’s components and their interrelationships and
2. create representations of the system in another form or at a higher

level of abstraction. [1]

Previous research on reverse engineering made great achievements concerning the
first item of this definition and was quite successful in creating “representations
of the system in another form”.

Unfortunately we are still struggling with the latter part of item 2 of the above
definition: Creating representations of the system that are not only of another
form but also at a higher abstraction layer. Depending on one’s definition of “a
higher abstraction layer” the achievements so far can be called anything from
encouraging to quite disappointing. In any case, we are currently unable to raise
the abstraction level high enough to tackle a number of pressing issues in reverse
engineering.

We believe that a promising approach to solve many of these problems lies
in the identification of real-world concepts and the establishment of an explicit

mapping between the concepts and their related program elements. In our terms
a concept doesn’t necessarily have to be a concept of the application domain
like an account number. It could as well be a technical concept like a stack or
sorting algorithm or a part thereof [2].

1.1 Pressing Issues

This section presents well-known problems in reverse engineering that we con-
sider solved unsatisfactorily today. Section 5 will point out how our approach
can help to address these problems.

Analytic Quality Assurance A great number of quality problems are of semantic
nature and cannot be detected by code analysis alone [3]. A prominent example is
logical duplication within programs. As changes to duplicated code may result in
unpredictable behavior, duplication has long been recognized as a quality prob-
lem that severely hampers software maintenance [4, 5]. Unfortunately today’s
approaches to find duplication (clone detection) are limited to detecting dupli-
cated code [6, 7] or lexically similar program fragments [8]. These approaches
have limitations as logical duplication is only partially manifested in the repre-
sentations they focus on.

Another attribute of quality code regards the naming of program entities
because incorrect and/or inconsistent naming is known to complicate program
comprehension [9, 10]. Due to their inherent semantic nature identifiers almost
completely elude automatic quality analysis. Quality assessments are thus lim-
ited to using heuristics based on the syntactical representation of identifiers [11].

Dominant Decomposition A number of challenging problems in reverse engineer-
ing are rooted in a fundamental problem of the modularization mechanisms of
most programming languages: As programs can be modularized in only one di-
mension, concerns are scattered across multiple modules. This problem is often
referred to as “The Tyranny of the Dominant Decomposition”. Most approaches
to identify these scattered concerns (or concepts), be it to assess their proper
separation or to identify parts that could be factored out as Aspects, are limited
to using heuristic methods based on static or dynamic program analysis [12].

The inability to reliably identify the location of the concepts severely ham-
pers two crucial activities in software maintenance: concept location and impact
analysis. Questions that typically arise when processing a change request like
“Raise the value-added tax from 16%to 19%.” are “Where in the program is
the tax implemented?” and “What happens if I change this implementation?”.
Today the answer to these seemingly simple questions takes a developer a con-
siderable amount of time reading source code and documentation as well as a
lot of debugging after he implemented the change.

1.2 Programming Means Loosing Information

The failure to solve these problems comes at no real surprise as most reverse
engineering methods use source code as their exclusive source of information.

Research on design recovery clearly points out, that this can be of limited suc-
cess only since “[. . .] source code does not contain much of the original design
information, which must be reconstructed from only the barest of clues” [13].

While reconstructing the lost information is a tough but solvable problem for
human reverse engineers, it is impossible to be carried out by a tool in a fully
automated manner. Consequently most methods and tools today try to tackle
this problem by applying heuristics that enable them to reconstruct little bits
of the lost information from the source and additional code-related artifacts like
version management systems [14].

Even though this approach lead to a number of great tools and methods that
effectively support reverse engineering, we still claim that when relying on source
code as the single source of information, one cannot overcome the fundamental
problem of information loss that occurred during programming.

1.3 Regaining the Lost Information

The strategies human reverse engineers apply when solving problems like the
ones presented above provide a hint how to tackle these problems: Next to ap-
plying intelligent reasoning, which we will probably never be able to emulate in
a tool, a human makes use of his knowledge about the problem as well as the
solution domain. Unfortunately this knowledge is not stored in the source code.
Therefore an important step towards solving many of the problems presented
above is to

1. provide an explicit representation of (parts of) this knowledge, and to
2. find a suitable link to the information that is stored in the source code.

To realize this we use ontologies to specify the required additional knowledge
and define a unified meta-model that includes the source code as well as the
knowledge provided by the ontologies. As it is infeasible to manually establish the
link between the ontologies and the source code, we developed a semi-automatic
approach that creates the link by analyzing the program’s identifiers.

1.4 Outline

After giving an introduction on ontologies and their usage for knowledge sharing
in Sect. 2, we present our unified meta-model for concept-based reverse engineer-
ing in Sect. 3. Its instantiation is described in Sect. 4. Section 5 explains how
the model helps to address the reverse engineering problems discussed in this
introduction and reports on the experience we made with the model and the
accompanying tool-chain. Section 6 relates our approach to previous work in
the field. Finally, Sect. 7 summarizes our findings and gives a glimpse on future
work.

2 Knowledge Sharing through Ontologies

To support sharing and reuse of knowledge of a particular domain one needs
to explicitly represent it in a formal manner. The first step in formally repre-
senting a body of knowledge is to decide on a conceptualization of the domain.
A conceptualization is an abstract, simplified view of a domain which is to be
described for a specified purpose. It contains a set of objects together with their
properties and relations [15]. An ontology is defined to be an explicit specifica-
tion of a conceptualization [16] and is used for sharing the knowledge about a
domain by making explicit the concepts and relations within it.

The term “specification” implies that this conceptualization is defined in a
rigorous manner. There is a wide spectrum through which the ontologies can be
seen from the point of view of the specification detail [17]. At the lowest level
of detail are controlled vocabularies which are nothing else than lists of terms.
The next level of specification are glossaries which are expressed as lists of terms
with associated meanings presented as glossary entries in natural language. The-
sauri provide additional relations between their terms (e.g., synonymy) without
assuming any explicit hierarchy between them. Many scientists prefer to have
some hierarchy included before a specification can be considered an ontology.
The most important hierarchical relation in ontologies is the “is-a” relation. At
the next stage are strict subclass hierarchies which allow the exploitation of in-
heritance (i.e., the transitive application of the “is-a” relation). More expressive
specifications include classes attributed with properties which, when specified at
a general level, can be inherited by the subclasses.

From the point of view of the information that they carry, we consider an
ontology to be a shared, formally defined and automatically accessible body of
knowledge representative for a particular domain. Depending on the specification
detail of this knowledge, there are a wide range of situations in which we can
use ontologies [17]: We can use them for vocabulary control in order to enforce
project standards. We can take advantage of the defined hierarchies available
within an ontology in browsing and navigating flat sources of information (e.g.
similar to “Google directories”). When the ontology is rich enough, then it can
be used for sense disambiguation or for ensuring consistency among the used
terms. By identifying the surrounding context of a concept given as input, an
ontology can also be used to achieve completion.

In the present work we use an informal meaning of the term “ontology” -
which we regard to comprise only concepts and relations between them, among
which the most important is the “is-a” hierarchical relation. In order to represent
an ontology we use a graph language similar to the RDF graphs [18]. Entities
within the ontology are the nodes of the graph. Relations between them are
represented as labeled arcs (Fig. 1b). Below we present an example of an ontol-
ogy which defines a large number of concepts which are lexicalized in English.
Subsequently we will use this ontology to exemplify our approach.

The WordNet Ontology. WordNet1 is an online dictionary of English inspired
by psycholinguistic theories of human lexical memory. Instead of organizing the
words according to their form, like the majority of other dictionaries do, WordNet
organizes the words according to the meaning of the concepts they denote in sets
of synonyms (synsets) [19]. WordNet 2.0 contains over 150,000 words, of which
more than 70% are nouns, grouped in more than 115,000 sets of synonyms. Due
to the words polysemy, every word can express more lexicalized concepts and
due to the synonymy every lexicalized concept can be represented through more
words. WordNet defines two different types of relations between the concepts
denoted through nouns:

Hypernymy/Hyponymy (Generalization). The synsets are organized hierar-
chically along the hyponymy/hypernymy (i. e. “is-a”) relation. Every word de-
finition consists of its immediate hypernym (superordinate) followed by distin-
guishing features. Hyponymy is the inverse relation of hypernymy. Both relations
are transitive.

Holonymy/Meronymy (Aggregation). In the case of nouns the distinguishing
features that are explicitly encoded in WordNet are the meronyms (i. e. “part-
of”). Meronyms, which represent parts of a whole, are features that can be
inherited by hyponyms. Holonymy is the inverse relation of meronymy. Both
relations are transitive.

calendar

solar calendar

Gegorian calendar Julian calendar

January, Jan February, Feb March, Mar

hyponymy

hyponymy hyponymy

meronymy
meronymymeronymy

S: (n) calendar (a system of timekeeping that defines the beginning and length…)
 direct hyponym
 S: (n) solar calendar (a calendar based on solar cycles)
 direct hyponym
 S: (n) Julian calendar, Old Style calendar (the solar calendar intro…)
 S: (n) Gregorian calendar, New Style calendar (the solar calendar now
 in general use, introduced by Gregory XIII in 1582 to correct …)
 part meronym
 S: (n) January, Jan (the first month of the year; begins …)
 S: (n) February, Feb (the month following January and …)
 …

(a) (b)

Fig. 1. Example of WordNet entries (a); Representation as a graph (b)

Figure 1a shows an example of how WordNet represents the calendar concept.
We notice three hyponymy relations in the calendar hierarchy (e. g. solar calendar
is a kind of calendar) and twelve meronymy relations (e. g. January is a part of
Gregorian calendar).

3 A Unified Meta Model

In this section we present a unified meta-model that extends the structural meta-
models with information related to the names which appear in the program and
1 http://wordnet.princeton.edu

the concepts from an ontology representing the reality modeled in a program. In
our view names are like glue between the program and the real-world concepts.
Supposing that you would remove this glue (for example through names obfus-
cation) then the concepts and the program would not be bound any more. As
presented in Fig. 2, our meta-model can be at best viewed as having three lay-
ers: The program layer contains the program entities and the relations among
them as they appear in the source code. The concept layer contains concepts
from an ontology which are relevant for the description of the program (not only
the concepts which appear directly in the program but also the ones related to
them). The link between the concepts and program elements is realized through
the lexical layer.

We present our meta-model in a bottom-up manner starting from the level
of code, continuing with the level of names and ending with the entities at the
level of concepts. When we refer in the text to an element from our meta-model,
we will write its name in small caps - e.g. identifier.

Class

…

PrimitiveType

Package Type Attribute

NamedProgramElementConcept

Relation

Word Identifier

Lexical LayerConcept Layer Program Layer

2..*

1..*

1..* 1..* 1..* 1..* 1..* 1 1..**

* *
Name

Fig. 2. The Bridge Meta-model

3.1 Program Layer

This level contains a representation of the structure of a program. Such a repre-
sentation is in fact a structural meta-model for reverse engineering similar to the
well-known FAMIX [20]. Bridge, our implementation of the unified meta-model is
based on the Memoria [21] meta-model developed at “LOOSE Research Group”,
Romania 2. The entities represented at this level are the program elements which
have names. An example is given in the gray box in Fig. 2.

NamedProgramElement. This entity is the root of the hierarchy of the
named program entities which are defined in the analyzed program. The named
entities represent the program elements which can be referred through names
(e.g., packages, classes), as opposed to the program entities which do not have
names (e.g., for loops). Between the NamedProgramElement entities are re-
lations corresponding to the semantic of the programming language (e.g. each
Class entity has a superclass another Class) [21].

According to the definition of identifiers found in the specifications of pro-
gramming languages, they are (almost) arbitrary sequence of characters used

2 “Politehnica” University of Timişoara, Romania, www.loose.upt.ro

only to enable the reference of the defined program elements later in the pro-
gram. At the program level we stick to this view. However, in order to be able
to link the NamedProgramElements with the real world concepts through
their names, we model the program identifiers and dedicate them a layer in our
meta-model.

3.2 Lexical Layer

The purpose of this layer is to model the names of the program elements in order
to assure the link between the program and the concepts. At this level we need
to resolve problems like the equality of program element names (a.k.a. program
identifiers), how can they be divided in atomic parts represented through words
and how are multiple words used to denote a concept.

Word. Words are lexical entities which correspond to the words in the natural
language. In the every-day life the words represent lexicalizations which denote
the most frequently used concepts. We consider the Words to be the basic and
indivisible entities which carry semantic at the lexical layer. This is why we
perform no analysis at the level of parts of a word.

We build the Word entities through the lexical analysis of the program iden-
tifiers. We consider a word to be a sequence of characters which could denote a
concept from the modeled domain. Depending on the modeled domain, a concept
can be denoted through different characters; e.g. one can allow the numbers to
be part of words or not.

When comparing more Words, we abstract from their capitalization. Fur-
thermore, we also abstract from their morphological derivations. One possibility
for this is to compare the stemmed values of their names instead of comparing
their exact names (e.g., the words “house” and “houses” are the same since they
have the same stem: “hous”)

Identifier. This entity corresponds to the name of a program element. Since
names of program elements can contain more words every Identifier contains
a sequence of Word entities.

We consider two Identifiers to be equal when they contain the same Words
in the same order. For example, the program element names ‘calendar’ and
‘ calendar’ will be represented in our model through a single Identifier object
that will contain only the Word representing the “calendar” string.

We consider that an Identifier, offers a lexical interpretation of the name of
a program element as a sequence of Words. In defining the Identifier entities,
we raised the abstraction level from the sequence of characters to sequence of
Words.

Name. Name is an entity which represents the name of a concept from an
ontology. The concepts within an ontology can be denoted through one or more
words and thus each Name contains a sequence of Words. Two Names are equal

when the set of Words that they contain are equal and the order in which they
appear is the same.

Since we restrict to lexicalized concepts, we do not take into consideration the
concepts that are not named in the real world (e.g. those that are described only
through sentences). We have a Name in our model only when we can associate
it to at least one concept. Due to the polysemy, a Name can refer to multiple
Concept entities.

This implies that in the case of a code with obfuscated program element
names, our model would not have any Name entity even though we have Iden-
tifier entities. The main difference between an Identifier and a Name is that
the former is a simple sequence of words and the later always represents the
name of a concept - e.g. in Fig. 4 due to the fact that there is no Concept
entity named “String” we have no Name entity for “String”.

3.3 Concepts Layer

The concept layer represents the core part of our meta-model. Building this layer
is the main purpose of our endeavors. The explicit links between the concepts
and the program elements are key issues in solving the problems presented in
Sect. 1.1. The meta-model elements here are concepts and relations between
them from an ontology. The concepts do not necessarily all appear in the code;
there can also be neighbors of concepts implemented in the code.

Concept. These entities correspond to the concepts defined in an ontology.
The concept layer holds all the concepts from an ontology which are relevant
for understanding a piece of code. Since we are dealing only with lexicalized
concepts, every Concept has one or more Names. Every Concept has one or
more Relations to other concepts.

Concepts that are represented in the program have direct access to the
NamedProgramElements that implement them. In this manner we can look
from a higher abstraction perspective to a piece of code - not only at exactly
what concepts are implemented but also how do these concepts relate to others
from the ontology.

Relation. Relations are entities which correspond to the relations between
the concepts from the ontology. A concept is uniquely identified in the concepts
hierarchy only through a name and the relations to other concepts (e.g. “isA”
and “partOf” relations). As each Relation has a source Concept and a target
Concept, one can navigate between concepts.

We can regard the Concepts and Relations as a graph, in a similar manner
with the representation of ontologies as graphs (Sect. 2).

4 Instantiating the meta-model

In the previous section we presented our meta-model in a declarative manner,
by describing its entities, relations among them and the rationales behind. Up to

know we left underspecified how one can obtain an instance of the unified meta-
model. As pointed out in the introduction, a manual construction of the model
would be possible but infeasible. In this section we present our (semi-)automatic
method for constructing the model.

Through every declaration, programmers define new names in the program by
making use of the already existing ones. For example in the code snippet in Fig. 3
we defined the name “GregorianCalendar” in terms of the name “Calendar”.
Once a program name is defined, it enters the vocabulary of the program and
can be subsequently used (e.g. for defining the name “January”).

class Calendar {
 …
}
class GregorianCalendar
 extends Calendar {
 int JANUARY = 0;
 int FEBRUARY = 1;
 …
} Source Code

Ontology
represented
as Graph

Program Graph

WordNet 2.0
Ontology

Program hierarchy
between names
represented
as graphs

subClass

classMember

classMember

WordNet Graph

hyponym hyponym

holonym

holonymcalendar

solar
calendar

January

February

Gregorian
calendar

Concept Identification = Graph Matching

Calendar GregorianCalendar

February

January

Fig. 3. Concept Identification Approach

In [22] we proposed a new view over programs by regarding them as know-
ledge bases where the knowledge representation language contains (a subset of)
the programming language used. The knowledge itself is expressed in this lan-
guage through the names of the identifiers. We can then abstract from programs
and represent them as graphs (e.g. upper-right part of Fig. 3) whose nodes are the
identifiers and whose edges represent the program relations between these identi-
fiers. As an example we consider here the relations generated by the type-system
(e.g. subClass) and those generated by the module system (e.g. classMember).

As presented in Sect. 2, ontologies are used for sharing conceptualizations. We
assume that the concepts that we need to identify are represented by entities
within an ontology. Thus, we identify concepts within a program by creating
mappings between parts of it and parts of an ontology. Thereby we identify
ontological entities within a program.

As illustrated in Fig. 3, we use ontology mapping techniques for recovering
information from programs. The input is twofold: on the one hand the names
of program elements and their relations and on the other hand the reference

ontologies expressed as graphs. The output is given by ontological entities which
are related to program elements.

In Fig. 4 we present an example for recovering the calendar, Gregorian cal-
endar, january and february concepts from the sources by mapping the program
to the WordNet ontology.

gregorian calendar january

gregorian calendar january int string

calendar

calendar

calendar gregorian january int string

isA partOfcalendar Gregorian calendar

_january

intGregorianCalendar

String

Calendar

Co
nc
ep
t

La
ye
r

Le
xi
ca
l

La
ye
r

Pr
og
ra
m

La
ye
r

january

hasWord

hasWord

hasWord hasWord

source sourcetargettarget

hasName

hasIdentifier

ha
sId
en
tifi
er

pr
og
ra
m
Ele
m
en
t

pr
og
ra
m
Ele
m
en
t

programElement

hasIdentifier hasIdentifier

subClass

hasAttr
hasType

hasName hasName

hasWordhasWord

hasWord

hasWord hasWord hasWord

Concept

RelationLe
ge
nd Name

Word

Identifier

Class

Attribute

Primitive Type

JANUARY

Fig. 4. An instance of the unified meta-model

5 Discussion

Our main motivation for defining the meta-model is to raise the abstraction level
at which the automatic code analysis can be performed. In this section we detail
on this twofold: Firstly, we present how the unified meta-model could support
solving a set of pressing reverse-engineering problems. Secondly, we give concrete
examples of the usages of the meta-model.

5.1 Benefits

In Sect. 1.1 we presented a list of reverse engineering issues that, in order to
be tackled, require treating the code from a more abstract point of view. Fur-
thermore, it would require explicit links between the concepts and the program
entities that implement them. We describe here how can our unified meta-model,
presented in the previous section, help in dealing with these issues.

The main innovation of our meta-model is that it brings together the low-
level source code and the ontology which describes an intensional, high-level

information within it. Depending on the specification detail at which the ontol-
ogy is available, the added value of the automatable analysis allows controlling
the identifiers of a program, improves program comprehension, supports code
navigation and detection of semantic defects which appear in the code. Part of
these benefits were already extensively presented in [22,23].

Code analysis. Raising the abstraction level at which the code is treated is a key
step towards a more advanced analysis. Once the unified model is built, it enables
us to regard the code from the perspective of the concepts it implements and vice
versa to regard the concepts from the perspective of where they are represented
in the program. In this way, some fundamental questions for performing the code
analysis which regard the traceability of concepts (e.g. Which are the concepts
implemented in a program? In which program parts is a concept implemented?
What concepts does a program part implement?) are trivial to answer.

Our meta-model provides intra- and interlayer relations between its entities
and thus supports navigability (Fig. 5). Once we are at the concepts level, we
can use these relations to navigate to the interesting concepts and then once
they are reached to go to the code level again e. g. starting from the value-added
tax we can look at conceptual level what other taxes are related and where are
they implemented in the program (e. g. navigate between program elements a
and b in Fig. 5).

Program Layer
Module

Concept Layer

Legend
Concepts

Identified Program Elements

Unidentified Program Elements

1

2 3

4
6

5

a

b

Fig. 5. Regarding the code from a conceptual perspective

Naming defects like synonymy and polysemy appear when there is no one-to-one
mapping between the program identifiers and the concepts they represent. In the
case of synonymy, a single concept is referred to through multiple names in the
code. In the case of polysemy, multiple concepts are referred in a particular pro-
gram through a single name. By making explicit the links between the concepts
implemented in the programs and the names that are used for their implemen-
tation, we can easily detect the synonymy and polysemy flaws [23]; e. g. Fig. 6a
presents the identification of synonymy.

Logical duplication defects appear whenever a concept is implemented in multiple
places in the code (e. g. concept 1 in Fig. 5). There is a big difference between
the low level “code clones” and the high-level “logical duplication” - while in the
first case the duplication is mainly defined in terms of the source code, in the
second case concerns the redundant representation of the real-world knowledge
in programs. By making explicit the links between the conceptual and program
layers we can automatically detect this class of defects [23]; e. g. Fig. 6b presents
the identification of logical duplication.

Conceptual decomposition. The object-oriented programming languages support
a single direction of the decomposition of the domain - which is known in the
literature as the dominant decomposition. Using the unified meta-model we ob-
tain a conceptual decomposition of programs. The identification of places in the
code where a concept is implemented could support the detection of aspects.

5.2 Experience

One of the most important questions is whether it is feasible to automatically
build the unified model. Our experiments performed so far show that the au-
tomatic construction of the complete model is not feasible but it is possible to
soundly construct parts of it. Having constructed it even partially, the unified
model still allows us to enhance the abstraction level of automatic analyses even
though we loose completeness.

calendar january

calendar january base

calendar january base

calendar
january

Calendar BaseCalendar

hasWord

hasWord

hasName program
Elem

ent

hasAttr hasAttr

hasIdentifier

JANUARYJANUARY

ellipse oval

graphics draw oval

ellipse 2d graphics oval draw

Ellipse2D Graphics

hasWord

hasWord

hasName

pr
og
ra
m
Ele
m
en
t

programElement

hasIdentifier

hasMethod

drawOval

ConceptLegend Name Word Identifier Class Attribute Method

ellipse 2d

ellipse, oval

(a) Synonymy (B) Logical Duplication

Fig. 6. Examples of the detection of synonymy and logical duplication

In Fig. 6 we present two concrete examples of the identification of semantic
defects. These two examples are taken from the Java standard library. The left
side of the figure shows the detection of the synonymy defect which we found
in the java.awt package. Here two distinct names are used (i.e. ellipse, oval) for
denoting the ellipse concept. The right side shows a case of logical duplication
which we also found in the Java library. The January concept is implemented
as attribute of the class java.util.Calendar as well as an attribute of the class
sun.util.calendar.BaseCalendar. We used the WordNet ontology in order to build
the unified meta-model. Although incomplete it proved to be powerful enough
for the detection of these flaws.

6 Related Work

To be read conveniently the discussion of the related work is arranged along the
levels of our meta-model.

Concept Layer While a lot of previous work well recognizes the importance of
real-world concepts for reverse engineering, e. g. [2,8,24], we know of relatively
little work that treats them as first-class citizens and makes use of external
knowledge bases.

The LASSIE system [25] uses a knowledge base for intelligently indexing
reusable components. The approach makes a distinction between the domain
model and the code model. Although the code model is populated automati-
cally, the domain model and its relation to the code model must be maintained
manually. Such a system proved to support comprehension tasks but the over-
head of manually synchronizing the models reduced the overall benefit.

In [22] we initially presented the idea of considering programs as knowledge
bases and described how the links between the program and the knowledge base
are established in a (semi-)automatic manner. In [23] we detailed on the appli-
cation of our meta-model to detect naming deficiencies and logical redundancy.

Lexical Layer There is a lot of highly valuable work that uses the programs
identifiers to identify concepts in the source code. Examples are Formal Concept
Analysis (FCA) and Latent Semantic Indexing (LSI). FCA is used to identify
high-level dependencies in the code by finding groups of elements (called “con-
cepts”) that have the same properties [26]. LSI is a statistical approach for
extracting semantical information from programs based on textual similarities
between files, classes or methods. Sets of words that have a high cohesion in
their usage and low coupling with other sets are named “concepts” [27]. Both
techniques work only on the program and the lexical layers by detecting con-
cepts described by words or properties that appear in the same configuration
repeatedly.

[8] uses LSI for identifying similarities among different files and thus supports
the detection of high-level concept clones. The detection and interpretation of
clones is done manually.

Recently [11] proposed a method for identifying naming defects without using
an external knowledge base. As this approach analyzes lexical characteristics only
it is limited to a certain class of defects; it can, e. g., not detect homonymy.

Program Layer A number of meta-models were presented that model structural
aspects of programs [20,21,28]. As these model do not provide an explicit repre-
sentation of the concepts a program implements, they are limited in supporting
the developer at reverse engineering activities like impact analysis.

Clone detection tools that work on the program layer have been proofed to
be successful in detecting duplicated code [4,6,7], but fail to identify true logical
redundancies as they do not explicitly take the implemented real-world concepts
into account.

7 Conclusions

Today the automatic support for a number of frequent reverse engineering ac-
tivities, like impact analysis, detection of semantic naming defects or detection
of logical duplication, is unsatisfactory. We believe this is due to the existing ap-
proaches’ inability to incorporate in their analysis other sources of information
than the source code itself. As a good part of knowledge, that would be impor-
tant for reverse engineering, is lost during programming, we cannot solve the
well-known problems without enriching reverse engineering methods and tools
with external information sources that make up for the lost knowledge. We pro-
pose the application of ontologies to specify parts of this knowledge as concepts
and relations between them.

In this paper we presented a meta-model that unifies this conceptual view
on programs with the classical structure-based reverse engineering meta-models
and thereby enables the establishment of an explicit mapping between program
elements and the real-world concepts they implement. We explained how the
model is instantiated in a semi-automatic way, discussed how it can help to solve
several well-known reverse engineering problems and exemplified its application
in the real-life.

While we are convinced that our work is a step in the right direction, we are
fully aware that it is only a small one. Significantly more work is not only needed
to evaluate the different variation points of our approach but also in validating it
more thoroughly with appropriate case studies as well as real-world applications.

References

1. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: A taxonomy.
IEEE Softw. 7(1) (1990) 13–17

2. Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In:
IWPC ’02, IEEE CS Press (2002) 271

3. Broy, M., Deissenboeck, F., Pizka, M.: Demystifying maintainability. In:
WOSQ ’06, ACM Press (2006)

4. Lague, B., Proulx, D., Mayrand, J., Merlo, E.M., Hudepohl, J.: Assessing the
benefits of incorporating function clone detection in a development process. In:
ICMS ’97. (1997)

5. Beck, K., Fowler, M.: Bad Smells in Code. In: Refactoring - Improving the Design
of Existing Code. Addison-Wesley, Reading, MA, USA (1999)

6. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone detection using
abstract syntax trees. In: ICSM ’98. (1998)

7. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.
28(7) (2002) 654–670

8. Marcus, A., Maletic, J.I.: Identification of high-level concept clones in source code.
In: ASE ’01. (2001)

9. Deissenboeck, F., Pizka, M.: Concise and consistent naming. Software Quality
Journal 14(3) (2006) 261–282

10. Anquetil, N., Lethbridge, T.C.: Assessing the relevance of identifier names in a
legacy software system. In: CASCON ’98. (1998)

11. Lawrie, D., Feild, H., Binkley, D.: Syntactic identifier conciseness and consistency.
In: SCAM ’06, IEEE CS Press (2006)

12. van Deursen, A., Marin, M., Moonen, L.: Aspect mining and refactoring. In:
REFACE ’03, University of Waterloo, Canada (2003)

13. Biggerstaff, T.J.: Design recovery for maintenance and reuse. Computer 22(7)
(1989) 36–49

14. Gı̂rba, T., Ducasse, S.: Modeling history to analyze software evolution. Interna-
tional Journal on Software Maintenance: Research and Practice (JSME) 18 (2006)
207–236

15. Genesereth, M.R., Nilsson, N.J.: Logical foundations of artificial intelligence. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (1987)

16. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5-6) (1995) 907–928

17. McGuinness, D.L.: Ontologies come of age. In: Spinning the Semantic Web. (2003)
18. Hayes, P.E.: Rdf semantics. Technical report, W3C Recommendation (2004)
19. Miller, G.A.: Wordnet: a lexical database for english. Commun. ACM 38(11)

(1995) 39–41
20. Tichelaar, S.: Modeling Object-Oriented Software for Reverse Engineering and

Refactoring. PhD thesis, University of Berne (2001)
21. Ratiu, D.: Memoria: A Unified Meta-Model for Java and C++ (2004)
22. Ratiu, D., Deissenboeck, F.: Programs are knowledge bases. In: ICPC ’06, IEEE

CS Press (2006)
23. Ratiu, D., Deissenboeck, F.: How programs represent reality (and how they don’t).

In: WCRE ’06, IEEE CS Press (2006) To appear.
24. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem

in program understanding. In: ICSE ’93, IEEE CS Press (1993)
25. Devanbu, P.T., Brachman, R.J., Selfridge, P.G., Ballard, B.W.: Lassie: a

knowledge-based software information system. In: ICSE ’90, IEEE CS Press (1990)
26. Arévalo, G., Ducasse, S., Nierstrasz, O.: Lessons learned in applying formal concept

analysis. In: ICFCA ’05. Volume 3403 of LNAI., (Springer Verlag)
27. Kuhn, A., Ducasse, S., Gı̂rba, T.: Enriching reverse engineering with semantic

clustering. In: WCRE ’05. (2005)
28. Bischofberger, W.R., Kühl, J., Löffler, S.: Sotograph - a pragmatic approach to

source code architecture conformance checking. In: EWSA 2004, Springer (2004)

