Erfahrungen aus 8 Jahren

Test-Gap-Analyse im Praxiseinsatz

CQSE

Dr. Sven Amann

Agenda

= Teil 1: Grundlagen der Test-Gap-Analyse
= Teil 2: Herausforderungen bei der Einfihrung

= Teil 3: Kosten-Nutzen-Berechnung

Teil 1

Grundlagen der
Test-Gap-Analyse

Stellen Sie sich vor, Sie sind dafir verantwortlich,
dass alle Codeénderungen »ausreichend« getestet werden...

Wo treten Fehler in Produktion auf?

Studie: C# System

Release A:

15% Code neu/gedndert, S Croses BTG
Anderungen >

>50% Ungefes’re’r Bestandscode e @

Release B:

15% Code neu/gedndert,
>60% ungetestet

Feldfehlerwahrscheinlichkeit 5x hoher fir ungetestete Anderungen!

Eder, Jirgens, ... Did We Test Our Changes? Assessment btw. Tests & Development in Practice, AST@ICSE 2013

Ziel
Finde die ungetesteten Anderungen
(= Test Gaps)

Weil Fehler im gednderten, ungetesteten Code
sehr viel wahrscheinlicher sind als anderswo

Codednderungen

aus dem
Versionskontrollsystem

»

Test-Gap-
Analyse

\ 4

Test Gaps

pe

Testabdeckung

mittels eines
Profilers

[H

I N I

1 [

j

11 [T
NI
1T T LT
I -) —— T 1
[TTTTI

=] =
| - i T
____ _ - : _ 7 _ __,__ __ ___I,Hm;m:*j ~ _ _
:_Ef _,__:,,_ — _rw%JE: :L.:ﬁ H_Iﬁu.%
1 s i
| [[R =
[T [I1 [1 &: 7__7 : ___ _____7_ _|HWW
|% I% L]
T P] [\;
_L_ﬂ | = _%m H\ a
[_f 7 | lﬁm‘
[_:|P_L._H ‘|_ i I _
o T
_ . ﬁnﬂw | Hu__|\
5N L E - T T
=] | i I —
e D e e
. P : | TE_T
| 1 BT [=
e e s
| =
| [TTITTT]]
[il - Seni
- — 1 HY
1 s S I
|]
[] = | HH T T 7
— [[[0 THET
T THHH [[[HH I
R [|
T 11] ___:_ S| ______i__ AT 1 T
= [i — |
F 5 =

1 H\HW T lEmﬂvLMH mwn S5t T ;_:____: k__:___ _k______ _, ,ﬁ __,:
hc_qﬁl_,_g__._l.__._ﬁ_: foe e : HTW ,":,__,,_ - F_“Eﬂi - HmHn A_ﬂ&ﬁ m : T ____ T ,_,_ __ ____ﬁ__: ,__:__,_,_:__,_ _,
%ﬂyﬁwﬂﬁnﬂﬁm_ﬁ HLITICTIL T 1T [IT ___,#ﬂrar T 8 A N A - _,___, ,: ,_
E&qﬂuﬂn’% A e e 1:_:_;

T : H -1 [— RSl
! L - 4_ =L Mu,_,:_ s
O T ,:,_______.___, it
o -
& ___ L % 7___f7:7%£_ ;"_ m_%__ﬁz.wﬂ__ﬁ______i_lt_*“_:___:___;? I ,G _ ___: T $ EEl—\mm
Huuum% \%WH Hﬁ% o 1 H
BiE fme i i s SR e
. m_mT_j— 15 ______ ‘|\ 11 i Inm|n Hm IAIHﬂ@m i . L
T __ _, II__ \Hﬁﬁ [] [L i - %ﬁ
e T T T o e —
;:_ _:_ __i,_ T ____ __: :_:_ ; _: i :__:_:__ JTT T __, _* i Hﬁ
[HH - T i T S o]
LT
Tl LS TR 1
i — T =H|_: H__ ; ! LI W
[T TEEe T T O o W= L

T

#I Jﬁuwm ﬁ _m“, il _f: _, i ,,__,,,,,___,,_,_ _ M_L_ﬂ_r_I__ﬁ__ﬂ_____I____M_w__ﬂ.w“w_j,
A_vx_iﬁu_u H% :_:,,_ R

_ 1 T
E0

o T T RS _ UM#r_ Bt Rianills _
Wﬁiﬁ ERL

i i i
1T H—H T

T 7 L £ _,,_Ermﬁ, | __,_z_,___,,__ ,ﬂﬁ_ w " :ﬁuﬂ. [uﬁ% H e
|% T_l_._yﬁ% H_H m ﬁ R s o 5 s s v I
7 (1 |ﬁ # H H‘H = s

» Test-Gap- «

Analyse

o

g:

z 10
g |

R T

o 11—
FEEH A — (1 W | e

13 | N 7 (1} =i 0
W e

Test-Gap-
—=- » Analyse -

©n
III
Q -

—|
@
e

< I

| JIELII

B Neu & ungetestet

Sl J L _BILUIUNESEE LA U L Bt Arr U111

ﬁﬁﬁnﬁw

Entwicklungsbegleitender Test

Feature #9838

DEV

RELEASE RELEASE RELEASE RELEASE RELEASE RELEASE
(0000 O i

== S = —
|:l o
| -| -| = oot |
|I::. | COCD 00 CO0o
Ctl s |
——] |:l IZIIZ‘ZI

v

2018 2019

m Issue TS-23282 - clang-tidy causes SIGSEGV on C++ project (rewrite clang-tidy
integration from JNI to call-in-new-process)

Updated Aug 10 2020 11:23
Creator: z Nils Kunze (on May 28 2020 12:32)

Assignee: Q Alexander von Rhein

project Type Priority Resolution Fix Version Component

TS Bug High Green Teamscale 6.1 Backend

Labels Affected Version Customer Customer Issue Dev Squad Epic Name

long-runner 6.0RC3 |] Denali

Freshdesk URL Merge Request PDash Task QA-Contact
https://git.cqse.eu/cqse/teamscale/-/merge_requests/8246 #4887 wilhelm

Description

Our clang-tidy integration can lead to Teamscale crashes because the clang-tidy tool sometimes (non-
deterministic) causes segfault errors.
Since we execute clang-tidy via NI in the same process as Teamscale, this segfault tears Teamscale down.

The concrete segfault appears in clang-tidy 9.0.2 (which we integrate currently) and has probably been fixed in

read more
¥ Affected files 1046
A Test Gaps
@ Auto-selectissue branch © ¥ Auto-selected: cr/23282_reimplement_clang_tidy_integration
Jun 16 2020 13:47-Now | Test Gap: 100% Coverage sources: ([ZI)

¥ Findings

¥ Commits 44

Issues: Bug Fix Day 9.06.20 v

(Auto-select issue branch @ ¥ (Automatically selected) Y Allissues Coverage sources: m
Found 210 issues matching your query Test Gap over all matching issues: 34%
S
ID Subject # Changes Test Gap v
[TS-23445 GitChangeRetriever stuck in branch labeling for 10-15 minutes 9 11 0%
O

4%

4 TS-23460 TestlmpactSynchronizer still runs OOM e 47
. . 13%

4 TS-23547 Slow analysis progress due to long labeling e 8

I
& TS-23501 Security: XML External Entity vulnerability in architecture uploads e 7 22
N
) - ’ . . 33%
[TS-23599 Potentially swallowed exception in AnalysisReportPersister Discarded Q 3
I
[TS-23576 Force Rollback Ul broken Q 3 33%
I
. . L L . 33%
4 TS-23446 Python architecture analysis handles late addition of __init__.py file incorrectly Q 3
O
n . . 50%
4 TS-23450 JIRA-Integration: Duplicated Table Rows, even for the same project G 2
T
4 TS-23458 Audit search appears to ignore line breaks 9 3 67%
]
. 77%
4 TS-23558 External Upload view doesn't load due to JSON error e 30
]

Teil 2

Herausforderungen

bei der Einfiihrung

Herausforderung: Vollstéindiges Bild

E2E Tests
Ii=:
Tests in der Cl d':tp Teamscale
= > :n
[| [|

222
i

Herausforderung: Anderung des Entwicklungsprozesses

E2E Tests Ergebnisse integrieren

=5 vau
Tests in der Cl d‘:‘l:p Teamscale G 0

e 4 - >
= e 5 Benachrichtigungen
Test Gaps —
g2 g
||

5‘5 E‘E ?‘S HE §‘E i‘s 3‘3

Herausforderung: Einfluss des Profilings

*+

Performance Profiler-Wahl
cgse.eu/tga-trumpf

» MM

Verhalten Redundanz

Herausforderung: Microservices

Service A

Service C

Service B

»

Test-Gap-
Analyse

c

pe

Container 1

Container 3

Container 5

Container 2

Container 4

Herausforderung: Microservices

wdockerh ub Q@ Search for great content (e.g., mysal)

Explore c qse/teamscale-j jacoco-a gent
cqse/teamscale-jacoco-agent ¥
By cqse * Updated a month ago
Teamscale JaCoCo Agent
Container

Gesamtsicht Uber alle Infrastructure as Code
Repositories

Analysis Progress

Project cgse-all

— - - -
1598521 151146d 1598852 0484985

Project cgse-all-java-default

3de77f6

Analyse-Performance

Herausforderung: Gewachsene Systeme

=) &

Ausgangssituation Ausgangssituation

= C++ = C++

= ca. 15 Entwickler = ca. 10 Entwickler
= 4,2 Millionen LOC = Neuentwicklung

aus >20 Jahren

Herausforderung: Gewachsene Systeme

= &

Ziel Ziel
= Neuen Code testen = Kein Test Gap

» Gednderten Code
(mdglichst) testen

Herausforderung: Gewachsene Systeme

Q) .-

— 4

’-—

=

= Transparenz fihrt zu Schlief3en von Test Gaps
= Neuer Code noch nicht ausreichend abgedeckt

Herausforderung: Gewachsene Systeme

W Tested churn: 669

1000
B Untested modification: 0
B Untested addition: 149
80 g Unchanged: 0

© Date: May 202019 11:57

600

Apr 19 Apr22 Apr 25 Apr 28 May 01 May 04 May 07 May 10 May 13 May 16 May 19

May 22 May 25 May 28 May 31 Jun03 Jun 06

= Test Gaps werden zeitnah geschlossen

Herausforderung: Gewachsene Systeme

=) &

Fazit Fazit

= Testabdeckung gesteigert = Ziel erreicht
= Ziel (noch) nicht erreicht

Herausforderung: Gewachsene Systeme

= Gehen Sie auf die Entwickler beim Projektstart zu
= ... und klammern Sie sich fest!

Teil 3

Kosten-Nutzen-Berechnung
der Test-Gap-Analyse

TR O S S N

b

h. 4

¥ P I I

L

Y
%Restfehler

%Restfehler = %Getestet * Testineffektivitat + %Testgap

¥ P I I ¥ P P I I I

%Restfehler = %Getestet * Testineffektivitat + % Testgap

‘ %l#%%ﬂfﬂf:

Fehler in ungetestetem Code

%Restfehler = 9 Getestet « Testineffektivitat + %Testgap

ittt ,_
;\ o
e e e e e e e _

—

Im Test verpasste Fehler
in getestetem Code

Did We Test Our Changes?
Assessing Alignment between Tests and
Development in Practice

Sebastian Eder, Benedikt Hauptmann, Elmar Juergens Rudolf Vaas, Karl-Heinz Prommer
Maximilian Junker CQSE Gbi, Munich Re Group,
Technische Universitit Minchen, Germany Germany Germany

by diffcent organizations, ofin in different countries and time
zones. Since thelr distance complicat unication, close

approach is sultable o produce meaningfol data and supports
test alignment in

Index Terms—Software.testing, software maintenance, dy-
mamic analysis, untested code.

L. INTRODUCTION
A substantial part of the total life cycle costs of long-

For such systems, a substantial part of their
tota lifecycle costs is spent on testing to make sure that new

oy . and—cqy
existing functionlity has not becn impaircd.

2 maintenance of these systems. test case sclection is
erucial. Ideally. cach test cycle should validate all implemented
functionality. In practice. however, available resources limit
cach test cycle to a subsct of all availabe test cascs. Snce sc-
lection of test cases for a test cycle determines which bugs are
found, this sclection process is central for test cffectiveness.

has several test cycles unchanged.
support this assumption (1], 2], (3], (41
I development and testing cfforts are not aligned well,

testing might focus on code arcas that did not change.
T work was parisly fnded byt Gerun Feckra My of Edcs

tiom s Resech (BMBF). gt “EvckCon, 01IS12054A”. The esponsily
o this s i iththe

I code changes might remain
niced. Tow algnment s o s berwees
testing and development. However, they are often performed
by difcrent team, often located i difernt couhurc and
time-zones. This distance complicates communication and
thus challenges test alignment. But how can we assess test
alignment and expose arcas where it needs to be improved?
Problem: We lack spproaches to determine alignment be-
tween development and testing in practice.

Souton:In i papr we propos o s
test alignment by measuring the amount of code that was
changed but not tested. We propose to use method-level
change coverage information 1o support testers in assessing
test alignment and improving test case sclection.

Our intuition is that changed, but untested methods are more

can contain bugs although they have not changed in ages.
Contribution: This paper presents an industial case study
that explores the meaningfulncss and helpfulness of method-

Re. System development and testing were performed by di
ferent organizations in Germany and India. The case study
analyzed all development changes, testing activity and all field
bugs, for a period of 14 months. It demonsirates tha feld bugs
arc substantially more likely (o occur in methods that were
changed but not test

1L RELATED WORK

“The proposed approach s relted (o the ficlds of defect
prediction, sclectve regression tesing, st case proritization.

named topics is the simplicity of the proposcd approach and
the fact that change coverage assesses the exccuted subscts of
test e, bt docs ot give bints 1 o impe them.

ity code regiom that were change b m..m amesed,
with the expectation that there are more field bu

£4ps in their est coverage.
B. Sudy Object

perform the study on 3 business information system at

Munich Re. The analyzed system was writien in C# and its

size are 340 KLOC. In total, we analyzed the system for 14

Thesystem b boen ol n e for i years

and is still actively used and mainta fore, there is

‘We analyzed two consecutive releases of the system. Re-
lease | was developed in five iterations in two moaths, and
release 2 was developed in ten erations in four months.
Both releases were deployed t the productive environment
due 1o hot fixes five times and were in productive use for
six months. Note that one deployment may concern several
bugs and changes in the system. The system contained 22123
(relems 1) rspctively 22712 el 2) mehods

B protubiey e mabod

el el (...-ug__,,d.(«d i)

3. Probabilty of s i bot relenes

0 3 cury metce st sllows eieing conrge, hage.
and change coverage information. The same ool Suppot was
used in carier studies [17],[19].
Validity Procedures: We focus on validity procedares and not
o threats o validity due (o space imitatoas.

Ve codtod manal ptions v et vy bug
i denied by our oo e

the correctness of method enclogeswe bk

mvnmg the main functionality were cxecuted thrce times.
C. Study Design and Execution

f randomly chosen method gencalogies. We found no
false gencalogies and have therefore a high coafidence in the.
comectness of our technique. We also used the algorithm in

For. i classify ©
the categories shown in Figure 2: Tested or untested, changed
or unchanged, and whether methods contain field bugs.

Method cseporie s to evaluae change conersge

Study Design: First. we collect coverage and program data,
then we answer RQ | and RQ 2 based on the collected data.

For answering RQ 1. we build method gencalogics and
identify changes during the development phase and relate
tage s o these gncsogie. Wil thi efomaton, we
identiy method geneslogies that are chang

For snewcing RQ 2 ae <o the probabiy ot e
defects for every category of methods by detecting changes

the productive phase of the sysiem in retrospective. This
i vl fo he snays sy sce ol

i rodctve eovironcact, which s e
by the company's processes.

‘We gain our results by identifying methods that are changed
in the productive phase, which means they were related (©
a bug. We then categorize methods by change and coverage
during the development phase. Based o this, we calculate the
bug probability in the different groups of methods.

Study Execution: We used 1ool support, which consists of
three parts: An cphemeral (18] profier that reconds which
methods were called within certain time interval, database:
that stores information about the system under consideration.

117), which as well

Q methods account for 34% in both releases
we analyzed. 15% of all methods were changed during the
development phase of the system, also in both releases. The
equaliy of the numbers for both releases is a coincidence.
8% respectively 9% of all methods were changed-untested.

2. These numbers constitte that there are gaps in the test
coverage of changed code in the analyzed system.
RQ 2 We found release 1 and 10 fixes in
release 2. The distribation of the bugs over the differeat change
and coverage categories of methods is shown in Table 1
‘The biggest part of bugs occurred in methods categorized as
changed-untested with 43¢% of all bugs in release | and 40%
of all bugs i relcase 2. In both eleases,there are considerably
less bugs in unchanged regions than in changed regi

‘The probabilities of bugs are shown in Figure 3. With 0.53%
in release | and 021% in release 2. the probabiliy of bugs
is higher in the group of methods that were changed-untested.

There are several models for defect prediction (). In
o 1 s ok, wn e culy g i
system and the coerage by tess and do no
e et s nd st probbiity of s inchaned,
but untesied code as validation of the
The poposcd sy i i 1 . whic v s
of changes “change bursts™ to predict bugs. The good results
hat wer civd by wing chang data o defet prcicion
encourage us to combine similar data with testng eff
Selectne regresion teting tectaigoes s e sclction
ases from changes in source d coverage
intormason 7. 1. 01
contrast 10 these approaches, the paper at hand focuses
ady executed test suies, because
ofien experts decide which tests o exccute to cover most of
the changes made 1o 3 software system [10]. However, their

that were found duing developmeat

tests. Much rescarch has been pmmm:mmmw]
and there is a plethora of tools [13] and a number of metrics

method Furthermore, we do not oaly coasider static
properties of the system under test, but changes
Empirical studies on related topics focus (o the best of ous
knowledge mainly on the effectiveness of est case mlu:lwn
ad pricriizationechigues 9, 15, o ou sy, we
et e vyt ity 1o coner changes of 3 sufwane
system, but do not consider sub sets of test suies.
111 CONTEXT AND TERMS
In this work, we focus oa system resting accordi
detnton of IEEE S1d 610.12.1990 (16] 1 dencte «;m...g
conducted on a complete, integrated system 1o evaluate the
system’s compliance with s specified requirements”. Sysiem
used to detect bugs in existing functionality

Our study uses methods as they are known from program-

the development phase s less likely to contain fekd defects.
E Discussion

RQ 1: With 155% of all methods being changed and 345 of
al methods being not tested, untested code

plays 2 consideable role i the analyzed system. The high
amount of changed methods resukts from newly developed
features. which means that many methods were added during
the development phase of both rleases.

ming as Java or C#. Methods
be regarded as units of functionality of a

are defined by a signature and a body.
To compare different releases of software system over time,

Fig. 1. Development fe-<ycke

or new features are developed. Development usually occurs
in irerations which are followed by fest runs which are the
xecution of a selection of fests diming o lest regressions
s well as the changed or added code. A development phasc
is completed by a release which transfers the system into
e producve phse. In he peoducive phse, fnciousliy

is usually neither added nor changed. If critical malfunctions

been changed or added
and been tested afterwards before the system is released we
comsidr it ot chengaesed I mesha chengo o adion

has not been tested before the system is transferred in the
e penelogy 1 and 3 in Fgune 1,

IV. CHANGE COVERAGE

To quantify the amount of changes covered by tests, we
introduce the metric change coverage (CC). I is computed by
the following formala and ranges between (0.1].
‘#methods changed-tested
~Fmethods changed

A change coverage of 1 (CC = 1) means that all methods

which have becn changed since the last test run have been
e

change coverage =

been covered by a test.

V. Case STUDY
A. Goal and Research Questions
The goal of the study i to show whether change coverage is
a useful metric for assessing the alignment between tests and
development. We formulate the following rescarch questions.
RQ 1: How much code is changed, but untested? The gosl
of this rescarch question is to investigate the existence of
hanged. o jusif

TABLE
IDISTRIBUTION OF FIXES OVER THE DIFFERENT CATEGORIES

i
of testing and development activities.

3
testers during the testing process. With information about

Relese | Relese
Cuegory Aclute_Relaive_ Abichae_Relaive
[r—r— 5 me 3w
umgedumessd 10 4% 4 a0
nchanged sesed o o o o
mchmgedameied 8 3% 3 am

43% respectively 40% of the changed methods were not
tested in the analyzed system. These high numbers also result

phase. For these new features, there was only a very limited
oumber of test cases.
RQ 2: With a probability of bugs in untested-changed methods
of 0.53% respecively 021%, this group of methods contains
most of the bugs. This means that the sysiem isclf contains
few bugs at the current stage of development and bugs are
brought into the sysiem by changes.

urthermore, the probability of bugs in untested code s,
in both releases, less than half of the probability in changed-
untested code. Hence, we conclude that only considering test
coverage is ot a efficient a5 consering change coverage.

if necessary, because the probability of bugs is increased in
changed-untested methods. Furthermore, we presented our tool
port that allows us to utlize our technique in practice.

fiest results that we presented in this work point out that the
consideration of code regions that are modified, but not very
well tested is important. This motivates future work on the
topic and the inference of improvement goals.

code regions to give hints 1 testers and developers which test
case 10 execute 1o cover more changed, but untested methods.
Therefore, we plan to evaluate techniques related 1o trace link
recovery to bridge the gap to fest cases.

REFERENCES
T Ball. Vs o reaive code cham measres o et

svkr.\My e o e o Bt
oth merric, est coverage and changed methods poiats (o
o eion ot moee ke 1o conei bgs e s
Is Change Coverage Helpful in Practice? We canployed
the proposed approach also in the context of Munich Re in
curreatly runaing development phases. We showed th results
1o deviopes s ser by escnin cod s, e ypes o
assemblics ondered by change coverage. During the discussion
of the results, we conducted open nterviews with developers (0
gain knowledge sbout how helpful information sbout change
coverage is during maintenance and tesing
Developers identificd meaningful methods in changed but
untested regic ing the static call graph to find methods
they know. With these. methods, the developers were able
0 identify features that remained untesied. For example the
processing of excel shects in a particular calculation was
hanged. i oo

some others, the (re-Jexecution of panicular test cases and
the creation of new test cases were issued. This increased
the change coverage considerably for the code regions where
the features are located. This shows that change coverage is
helpful for practitioners.

V1. CONCLUSION AND FUTURE WORK.

a single method over time. A gencalogy connects all releases.
of a method in chronological order [17].

In the context of our work, the life cycle of a software
system consists of two aliemating phases (see Figure 1). In
the development phase, existing functionality is maintained

this work. Therefore, we quantify changed and untested code.

this rescarch question is to decide whether change coverage
can be used s a peedictor for bugs in large code regions and is

of kst sites and chanes in @ simple a0 underandabe
way. Instead of using rather complex mechanisms to derive
‘code units that may be subject 1o changes, we are focusing
on changed but untested methods and calculate an expressive
metric from these methods. The results show that the use of

X ocamcr “Fesure el o i ywem n ICPC.

Paper published at Workshop on Automation of Software Test, 2013.

Wo treten Fehler in Produktion auf?

Studie: C# System

Release A:

15% Code neu/gedndert, S Croses BTG
Anderungen >

>50% Ungefes’re’r Bestandscode e @

Release B:

15% Code neu/gedndert,
>60% ungetestet

Feldfehlerwahrscheinlichkeit 5x hoher fir ungetestete Anderungen!

Eder, Jirgens, ... Did We Test Our Changes? Assessment btw. Tests & Development in Practice, AST@ICSE 2013

%Restfehler = %Getestet * Testineffektivitat + % Testgap

P P I I I P I I I

Ohne Test-Gap-Analyse

%Restfehler = %Getestet * Testineffektivitit + 50%

Ohne Test-Gap-Analyse

Y
50% Testgap

%Restfehler = %Getestet * Testineffektivitit + 50%

Ohne Test-Gap-Analyse

%Restfehler = 50% = Testineffektivitit + 50%

Y
50% Getestet

Ohne Test-Gap-Analyse

%Restfehler = 50% = Testineffektivitit + 50%

Ohne Test-Gap-Analyse

%Restfehler = 50% = Testineffektivitit + 50%

Ohne Test-Gap-Analyse

%Restfehler = 50% * 20% + 50%

Ohne Test-Gap-Analyse

%Restfehler = 10% + 50%

Ohne Test-Gap-Analyse

%Restfehler = 609%

Ohne Test-Gap-Analyse

%Restfehler = 60%

Ohne Test-Gap-Analyse

%Restfehler = %Getestet * Testineffektivitat + %Testgap

P P P I I I P W I W

Mit Test-Gap-Analyse

%Restfehler = 60%

Ohne Test-Gap-Analyse

. W -

%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%gf

%Restfehler = 90% * 20% + 10%

\WW/////%»‘ &i&

Mit Test-Gap-Analyse

%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%@f

%Restfehler = 18% + 10%

Mit Test-Gap-Analyse

%% Restfehler = 60%

Oh TprA |)’

*i**ﬂ#%@f

%Restfehler = 28%

Mit Test-Gap-Analyse

Reduzierte Feldfehler = 509%

Reduzierte Feldfehler = 509%

Test-Gap-Analyse reduziert Feldfehler in Applikationen der Munich Re um 2

Fazit

Sichtbarmachen von Qualitat ist essentiell

Werkzeuge und Prozesse sind wichtig

Internes Change Management notwendig

Deutlicher positiver Effekt beobachtbar

Am besten gleich von Anfang an einsetzen

Kontakt — Ich freue mich auf Diskussionen!

Dr. Sven Amann - amann@cgse.eu - +49 172 1860063

CQSE GmbH
Centa-Hafenbradl-Str. 59
81249 Minchen

Im Anschluss:

[m] e [m]
)
[=]

cgse.eu/codedays2021

CQSE

Continuous Quality in Software Engineering

