
Injection-Angriffe: 
Szenarien, Analyseansätze, Gegenmaßnahmen 
und Erfahrungen aus der Praxis

Dr. Alexander von Rhein



Alexander von Rhein

Research
 Software Verification
 Software-Product-Line Analysis
 Taint-Analysis

Consulting
 Software Development
 Quality-Assessment & Quality-Controlling

Free for Research & 
Open Source Projects



Security Threat: System Command Injection

rm -rf

source sink



Most Common Security Threats in SAP Systems

 Code execution
 Cross-client access
 Directory traversal
 Database modification
 Authentication flaws
 Open SQL injection

Injection/leak attacks



Security Situation in SAP systems

 83% Forbes 500 companies use SAP (mainly ERP systems)
 Customization

 SAP systems are extended with custom code written in ABAP
 In-house, closed-world development

[Business Risk Illustration, Onapsis]



Analysis View – Closed World System

 Source (Report Parameter)

 Sinks
 System-Commands

 CALL ‘SYSTEM‘ ID ‘COMMAND‘
 Directory Traversal

 OPEN DATASET
 ABAP Program Generation

 INSERT REPORT
 GENERATE SUBROUTINE POOL

 Loop iteration limits
 DO input TIMES. … ENDDO.

 … 21 pattern in total

source

sink



ABAP in 1 minute

Object, can be
invoked by user

Parameter of the report

„Main method“ of the report

Class declaration

Class implementation



Analysis View – Closed World System

 Source (Report Parameter)

 Sinks
 System-Commands

 CALL ‘SYSTEM‘ ID ‘COMMAND‘
 Directory Traversal

 OPEN DATASET
 ABAP Program Generation

 INSERT REPORT
 GENERATE SUBROUTINE POOL

 Loop iteration limits
 DO input TIMES. … ENDDO.

 … 21 pattern in total

source

sink



Simple Security Threat Scenario

SAP ERP

Database



Data Injection

Data Leak



Trivial Checks for Deprecated Sinks

 Local analysis (typically method level)
 Fast
 Here: Based on discouraged statements



Taint-Propagation Analysis

 Detailed taint-propagation analysis
 Requires much more time and memory
 Data-flow analysis
 Tracks user input to unsecure statements

y = 1, z = 2
x

z = x + y

z

1

2

3

yx z
 



source sink

source

sink



Global inter-procedural taint-propagation analysis

 Complex data flow
 Crossing method boudaries
 Multiple files

 Large, active code bases
 Incremental analysis

1

2

3

4

5 sink

source



1659 LOC / 1301 SLOC



Findings im Benchmark

 Trivial Checks
 12.943 yellow findings
 24.555 red findings

 Taint Analysis
 7.251 taint-analysis findings
 Some methods (2%) had to be ignored (cycles, complexity)



Performance

 Performance benchmark
 12.600.000 source lines of code from customers

 Some projects use git, so they have actually more code
 with 270.000 methods

 3 hours initial analysis time
 Analysis time for single commit depends on number of „touched“ methods

 Typically few seconds





Beyond ABAP

 ABAP
 Closed world
 Client/Server setting
 Database and Server-Filesystem are typically trusted
 Entropy of identifiers (method names, variable names) is high

 Java, C#, …
 No closed-world scenario
 Who defines the taint sources and sinks?
 More use of high-level programming (inheritance, lambdas, …)
 Many similar variable and method names



Code

Code

… and many more.

Version 
HistoryModels Static 

Analysis

Test 
CoverageReviewsIssuesTest Results

Models Version History Static Analysis

Test Coverage

GCOV

ReviewsTest Results

cmocka

Issue Trackers



Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



GUI.Base

GUI.Dialogs Authentication

UI Controls

Data 
Validation



• = Modified & untested
• = Added & untested
• = Unchanged



Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results





Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?

Are there 
head-

monopolies?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



Einarbeitung
abgebrochen

Neues Team

Knowledge-Transfer



Which 
changes 
have not 

been 
reviewed?

Is our 
architecture 

in 
conformance 

with the 
code?

Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?

Are there 
head-

monopolies?

Which 
components 

are most 
error-prone?

Do we 
discover 

errors early 
enough?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



www.cqse.eu/de/ressourcen/blog/



Conclusion

Static analysis can find many attack scenarios at development
time.

Security attacks are often injection/leak attacks.

(Near) real-time feedback is vital for acceptance. Our solution
is incremental analysis.

Wanted: Evaluation partners for security analyses (and 
teamscale in general).



Kontakt

Dr. Alexander von Rhein · rhein@cqse.eu · +49 159 04517754
@alexvonrhein
www.cqse.eu/en/blog

CQSE GmbH
Centa-Hafenbrädl-Straße 59
81249 München


