
Injection-Angriffe: 
Szenarien, Analyseansätze, Gegenmaßnahmen 
und Erfahrungen aus der Praxis

Dr. Alexander von Rhein



Alexander von Rhein

Research
 Software Verification
 Software-Product-Line Analysis
 Taint-Analysis

Consulting
 Software Development
 Quality-Assessment & Quality-Controlling

Free for Research & 
Open Source Projects



Security Threat: System Command Injection

rm -rf

source sink



Most Common Security Threats in SAP Systems

 Code execution
 Cross-client access
 Directory traversal
 Database modification
 Authentication flaws
 Open SQL injection

Injection/leak attacks



Security Situation in SAP systems

 83% Forbes 500 companies use SAP (mainly ERP systems)
 Customization

 SAP systems are extended with custom code written in ABAP
 In-house, closed-world development

[Business Risk Illustration, Onapsis]



Analysis View – Closed World System

 Source (Report Parameter)

 Sinks
 System-Commands

 CALL ‘SYSTEM‘ ID ‘COMMAND‘
 Directory Traversal

 OPEN DATASET
 ABAP Program Generation

 INSERT REPORT
 GENERATE SUBROUTINE POOL

 Loop iteration limits
 DO input TIMES. … ENDDO.

 … 21 pattern in total

source

sink



ABAP in 1 minute

Object, can be
invoked by user

Parameter of the report

„Main method“ of the report

Class declaration

Class implementation



Analysis View – Closed World System

 Source (Report Parameter)

 Sinks
 System-Commands

 CALL ‘SYSTEM‘ ID ‘COMMAND‘
 Directory Traversal

 OPEN DATASET
 ABAP Program Generation

 INSERT REPORT
 GENERATE SUBROUTINE POOL

 Loop iteration limits
 DO input TIMES. … ENDDO.

 … 21 pattern in total

source

sink



Simple Security Threat Scenario

SAP ERP

Database



Data Injection

Data Leak



Trivial Checks for Deprecated Sinks

 Local analysis (typically method level)
 Fast
 Here: Based on discouraged statements



Taint-Propagation Analysis

 Detailed taint-propagation analysis
 Requires much more time and memory
 Data-flow analysis
 Tracks user input to unsecure statements

y = 1, z = 2
x

z = x + y

z

1

2

3

yx z
 



source sink

source

sink



Global inter-procedural taint-propagation analysis

 Complex data flow
 Crossing method boudaries
 Multiple files

 Large, active code bases
 Incremental analysis

1

2

3

4

5 sink

source



1659 LOC / 1301 SLOC



Findings im Benchmark

 Trivial Checks
 12.943 yellow findings
 24.555 red findings

 Taint Analysis
 7.251 taint-analysis findings
 Some methods (2%) had to be ignored (cycles, complexity)



Performance

 Performance benchmark
 12.600.000 source lines of code from customers

 Some projects use git, so they have actually more code
 with 270.000 methods

 3 hours initial analysis time
 Analysis time for single commit depends on number of „touched“ methods

 Typically few seconds





Beyond ABAP

 ABAP
 Closed world
 Client/Server setting
 Database and Server-Filesystem are typically trusted
 Entropy of identifiers (method names, variable names) is high

 Java, C#, …
 No closed-world scenario
 Who defines the taint sources and sinks?
 More use of high-level programming (inheritance, lambdas, …)
 Many similar variable and method names



Code

Code

… and many more.

Version 
HistoryModels Static 

Analysis

Test 
CoverageReviewsIssuesTest Results

Models Version History Static Analysis

Test Coverage

GCOV

ReviewsTest Results

cmocka

Issue Trackers



Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



GUI.Base

GUI.Dialogs Authentication

UI Controls

Data 
Validation



• = Modified & untested
• = Added & untested
• = Unchanged



Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results





Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?

Are there 
head-

monopolies?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



Einarbeitung
abgebrochen

Neues Team

Knowledge-Transfer



Which 
changes 
have not 

been 
reviewed?

Is our 
architecture 

in 
conformance 

with the 
code?

Does our
system leak 
confidential

data?

Where are 
gaps in my 

tests?
Which code
is actually

used?

Are there 
head-

monopolies?

Which 
components 

are most 
error-prone?

Do we 
discover 

errors early 
enough?

Models

Software Intelligence

Code Version 
History

Static 
Analysis

Test 
Coverage

ReviewsIssues

Test Results



www.cqse.eu/de/ressourcen/blog/



Conclusion

Static analysis can find many attack scenarios at development
time.

Security attacks are often injection/leak attacks.

(Near) real-time feedback is vital for acceptance. Our solution
is incremental analysis.

Wanted: Evaluation partners for security analyses (and 
teamscale in general).



Kontakt

Dr. Alexander von Rhein · rhein@cqse.eu · +49 159 04517754
@alexvonrhein
www.cqse.eu/en/blog

CQSE GmbH
Centa-Hafenbrädl-Straße 59
81249 München


