Injection-Angriffe:
Szenarien, Analyseansatze, GegenmalBBnahmen
und Erfahrungen aus der Praxis

Dr. Alexander von Rhein

~ CQSE

Continuous Quality in Software Engine

Alexander von Rhein

Research ’\"/‘ UNIVERSITAT
= Software Verification fi{(PASSAU
n Soﬁ-wq re- Prod uct-Line Ana I)’Sl S Fakultit fiir Informatik und Mathematik

= Taint-Analysis

Consulting CQSE

= Software Development
= Quality-Assessment & Quality-Controlling

I Free for Research &
Tea mSCCI e Open Source Projects

Security Threat: System Command Injection

6
7

CALL 'SYSTEM' ID 'COMMAND' FIELD
ID 'TAB' FIELD re

sultTable.

Most Common Security Threats in SAP Systems

= Code execution

= Cross-client access

= Directory traversal

= Database modification
= Authentication flaws

= Open SQL injection

Injection/leak attacks

Security Situation in SAP systems

= 83% Forbes 500 companies use SAP (mainly ERP systems) W
= Customization ®

= SAP systems are extended with custom code written in ABAP
= In-house, closed-world development

If our company’s SAP system is breached it

will cost us 522 million per minute.
CISO of a Fortune 500 Company

[Business Risk lllustration, Onapsis]

Analysis View - Closed World System

9 PARAMETERS:
10 p_file TYPE string,

= Source (Report Parameter) TR T T

12 p_code TYPE string.)
. SInks -

= System-Commands
+ CALL'SYSTEM' ID ‘COMMAND’ [o s 1 comue: o 1 o
Directory Traversal
= OPEN DATASET 15" TexT ook encoomus pEFAL.
ABAP Program Generation
= INSERT REPORT A SN O eV T G R ET & JRO e L
= GENERATE SUBROUTINE POOL
Loop iteration limits
- DOinput TIMES. ... ENDDO. & ™= ™

... 21 pattern in total

ABAP in 1 minute

Object, can be

Parameter of the report

invoked by user

Class declaration

Class implementation

1 REPORT zexample.

2 PARAMETERS: p_path TYPE String DEFAULT 'some_path'.
2 | CLASS zlcl example DEFINITION.

4 PUBLIC SECTION.

5 CLASS-METHODS main.

6 CLASS-METHODS compose

7 IMPORTING path TYPE String

8 RETURNING VALUE(returnValue) TYPE String.
S | ENDCLASS.

10

11 | CLASS zlcl_example IMPLEMENTATION.

12 METHOD main.

13 DATA: command TYPE string.

14 command = compose(p_path).

15 CALL 'SYSTEM' ID 'ls' FIELD command.
16 ENDMETHOD .

17 METHOD compose.

18 returnValue = 'cat ' + path.

19 ENDMETHOD .

20 | ENDCLASS.

21

22 START-OF-SELECTION.

23

z1lcl_example=>main()\T\\“\\\\\\\\\\\\\\~__

»,Main method* of the report

Analysis View - Closed World System

9 PARAMETERS:
10 p_file TYPE string,

= Source (Report Parameter) TR T T

12 p_code TYPE string.)
. SInks -

= System-Commands
+ CALL'SYSTEM' ID ‘COMMAND’ [o s 1 comue: o 1 o
Directory Traversal
= OPEN DATASET 15" TexT ook encoomus pEFAL.
ABAP Program Generation
= INSERT REPORT A SN O eV T G R ET & JRO e L
= GENERATE SUBROUTINE POOL
Loop iteration limits
- DOinput TIMES. ... ENDDO. & ™= ™

... 21 pattern in total

[Progam Edt Goto Utiities Environment System Help

o “ [l4€ QOO =H el
ABAP Editor: Initial Screen
S @ vk i I WO 22 (©Debuggng (@ Withvarant [V

Program ™ Create

Simple Security Threat Scenario s

= Source Code
Variants
Attributes
Text elements

Documentation
55 Display #' Change

SAP ERP .

REPORT z_example.

Data Injection
PARAMETERS: command TYPE String DEFAULT 'ls’.

DATA resultTable TYPE TABLE OF char255 WITH EMPTY KEY. .
CALL 'SYSTEM' ID 'COMMAND' FIELD command Dai'a I.eak -
ID 'TAB' FIELD resultTable.

cl_demo_output=>display(resultTable) .

[= Program [Edit Goto System Help l}
o «m 000 = 77 0%
demo
@
‘ COMMAND C]

Database

Trivial Checks for Deprecated Sinks

= Local analysis (typically method level)
= Fast
= Here: Based on discouraged statements

25 METHOD main.
26 DATA: secret TYPE string.
27
28 secret = foo(filename).
29 secret = secret + 'postfix'.
30
}] 31 | CALL 'SYSTEM' ID 'ls' FIELD secret.
Usage of CALL 'SYSTEM /3/ EHBMETHOD. e

Security / Security

The internal statement CALL cfunc executes a system function cfunc . Some system functions, e.g.
SYSTEM or ThilpInfo allow to execute any command of the operating system and should be avoided.

The SXPG frameworkshould be used instead.

Taint-Propagation Analysis

= Detailed taint-propagation analysis
= Requires much more time and memory
= Data-flow analysis

= Tracks user inpu’r- to unsecure statements -

- . PARAMETERS: X
DATA: y=1,z=2 l

Global inter-procedural taint-propagation analysis

1 REPORT zexample.
- Comp|ex data flow - @ |PARAMETERS:: p_path TYPE String DEFAULT 'some_path'.

- Crossing method boudaries CLASS zlcl example DEFINITION.
PUBLIC SECTION.

3
4
m Mu|tip|e files 5 CLASS-METHODS main.
. 6 CLASS-METHODS compose
= Large, active code bases 7 IMPORTING path TYPE String
. 8 RETURNING VALUE(returnValue) TYPE String.
= Incremental analysis T
10
11 CLASS zlcl example IMPLEMENTATION.
i) METHOD main.

DATA: command TYPE string.

13
14‘ command = compose(p_path).
15‘ CALL 'SYSTEM' ID 'ls' FIELD command.-

16 ENDMETHOD .

17 METHOD compose.

18 returnValue = 'cat ' + path.
19 ENDMETHOD .

26 ENDCLASS.

21

START-OF-SELECTION.
z1cl example=>main() .

AESIGH ms_deto Stengmd-dop_mod sowa-it TO
LOOR BT 4Tt itmmad INTO ga_itema 3000
FEAD TASLI gt itexa 300 INTO 1z itex 30
WITE VEY itw mmber = g3 itess 3001t
ATPIND 1z item 500 7O 1t ites 300.
EOLoOF. g :
IF ay—xcheo X 0 MND 40t iteex: IS KESTEN
FEFFESH £TE_dtemak
ACE_ftmzak = 1t ditex 300(]-
SOIX . =5 £

/ 1301 SLOC

Findings im BenCthI rk Missing authority check before CALL TRANSACTION

Code Anomalies / Security

CALL TRANSACTION executes an transaction with the given transaction code. Until SAP_BASIS release
7.40 no authority check was performed for CALL TRANSACTION, from SAP_BASIS release 7.40 on, a
authority check is only performed, if the addition WITH AUTHORITY CHECK is used.

= Trivial Checks
To solve this issue, the addition WITH AUTHORITY CHECK should be added (if SAP_BASIS version is 7.40

- ‘I 2 943 ” F d . or higher)or the function module AUTHORITY_CHECK_TCODE should be called before.
.943 yellow findings

= 24.555 red findings

in

536 CALL TRANSACTION USING MODE
537 MESSAGES INTO

-

= Taint Analysis
= 7.251 taint-analysis findings
= Some methods (2%) had to be ignored (cycles, complexity)

Execution of OS command: filename reaching secret at
Z_CALLER.abap line 31.

taint analysis / Taint Propagation

A data value is read from user input and passed to a statement that executes OS commands.

For further information see SAP help page on system command injection.

e Source: PROG/Z_CALLER.abap:3
e Sink: PROG/Z_CALLER.abap:31

Performance

= Performance benchmark
= 12.600.000 source lines of code from customers
= Some projects use git, so they have actually more code

= with 270.000 methods

= 3 hours initial analysis time
= Analysis time for single commit depends on number of ,touched” methods
= Typically few seconds

+ in CLAS/ZCL_UNSAFE _TEST.abap
7 PUBLIC
8

in PROG/Z CALLER.abap:3 CREATE PUBLIC .

9
10 PUBLIC SECTION.
11
+ in PROG/Z_CALLER.abap 12 ~ METHODS foo |
u] Possibly tainted parameter “info®
1 REPORT ztestsrc_df class. - -
5 == 13 IMPORTING info TYPE String |
% PARAMETERS: filename TYPE String DEFAULT ‘default filename'. | 2 RETURNING value(r_result) TYPE string . |
iﬂ This source taints the variable *filename™ 15 PROTECTED SECTION.
4 16 PRIVATE SECTION.
5 s O S S TS » 17 ENDCLASS. "ZCL_UNSAFE_TEST DEFINITION
6 ¥ CLASS zlcl main DEFINITION e
= e R - 19 N
& .
22 *
S . 3 S
n -y 24 CLASS zcl_unsafe_test IMPLEMENTATION.
22 T o o e e e e e e e e e e e e e o e e e e e * 25
23 CLASS zlcl_main IMPLEMENTATION. 26y (METHOD foo.
24 - 27 r_result = info. |
er ME e] '\E]\Iarmh 'r_result’ may be tainted.
2 II'OD . "
!EJField *filename’ may contain tainted data ig ENDMETHOD . foo
26 DATA: t TYPE string.
o secre Skring 30 ENDCLASS. "ZCL_UNSAFE_TEST IMPLEMENTATION
28 _secret = foo(filename). |
'\3] Possibly tainted parameter at index @ can be modified in method call
|6) Possibly tainted return value in assignee ‘MCR_foo™2 ASSIGNEE " + in CLAS/ZCL UNSAFE_TEST WITH_SINK.abap
2 secret = secret + 'postfix’. 7 PUBLIC
; 8 CREATE PUBLIC .
L= . . 9
Q)os command injection with tainted variable “secret i PUBLIC SECTION.
32 ENDMETHOD . "main
11
33 METHOD foo. 12 METHODS foo |
;2 EN;:‘iE:ur‘nValue = "CLEANT. .. @N.Ssﬁly tainted parameter “info®
. main . :
THOD . 13 IMPORTING info TYPE String |
S0 TRIENICEASS . el e g MO eI TEON 14 RETURNING value(r result) TYPE string . |
;; R RS ET TN 15 PROTECTED SECTION.
ool 2 16 PRIVATE SECTION.
39 zlcl_main=>main() . | 17 ENDCLASS. “ZCL_SAFE_TEST DEFINITION
Ll] Possibly tainted field “PROG/Z_CALLER.abap##filename’ can be modified in method ca 18 = o

CLASS zcl_safe_test IMPLEMENTATION.
METHOD foo.
CALL 'SYSTEM' ID 'ls’ FIELD info.
r_result = info. |
| é]\rariaile ‘r_result’ may be tainted.

28 ENDMETHOD . "main

30 ENDCLASS. "ZCL_SAFE_TEST IMPLEMENTATION

Beyond ABAP

= ABAP
= Closed world
= Client/Server sefting
= Database and Server-Filesystem are typically trusted
= Entropy of identifiers (method names, variable names) is high
= Java, CH#, ...
= No closed-world scenario
= Who defines the taint sources and sinks?
= More use of high-level programming (inheritance, lambdas, ...)
= Many similar variable and method names

CH-
Swift

N

X Code)

4)
cmocka
JUnit

Test Results)

| Version History

-
MATLAB
SIMULINK
. Models
-
XJIRA
dq TFS
L Issue Trackers

~N
++

N Crucible

Reviews

(N

¥/ Ci Absint

2 Pylint

Static Analysis
\ y

()

GCOV

¥ BULLSEYE

LV TESTING TECHNOLOGY

| Test Coverage)

... and many more.

Version

Static
Analysis

Test
Coverage

Static
Analysis

Test
overage

GUI.Didlogs

L—

N L

Ul Controls

GUI.Base \

Authentication

Data
Validation

g

| o = Added & untested
§ * = Unchanged

Version
Histor

Static
Analysis

Test
overage

Version
Histor

Static
Analysis

Test
overage

Einarbeitung
abgebrochen

RL1] |
[
I EEee—" e | 1T
I EE NEIE 8§ IR HEEB =N I
] TR T A Ee] N e T R N

[e i E——
I 5 N T Eidls] i
D .

n m
il |
in nme .

L L R RR Ees ROTEEL 4 ¢t [8 0 | & [l § QI B§ R Il | Bl ||[80 Bl

1IN .
s . ™
C Bl]

Neues Team

Knowledge-Transfer

Version
Histor

Static
Analysis

Test
overage

Software Quality Blog

www.cgse.eu/de/ressourcen/blog/

Incremental global ABAP security analysis
with Teamscale

Posted on 11/10/2017 by Dr. Alexander von Rhein

Our mission at CQSE is to help customers improve the quality of
their code. Our tool Teamscale checks source code and reports
issues such as logical flaws, copy&paste programming and
possible performance bottlenecks. However there is one aspect of
code quality that we did not address so far: code security. Code is
secure if it can not be used by an attacker to perform unintented,
dangerous actions on the host system. For example, if an attacker
inserts *; DROP TABLE Customers; in an input field, this might
cause a system to delete the Customers table—a well known »SQL
Injection« attack. In this post, | will explain how new analyses in
Teamscale can efficiently detect vulnerabilities for such attacks
and report them to developers.

Security Threats in Source Code

Conclusion

Static analysis can find many attack scenarios at development
fime.

Security attacks are often injection/leak attacks.

(Near) real-time feedback is vital for acceptance. Our solution
is incremental analysis.

Wanted: Evaluation partners for security analyses (and
teamscale in general).

Kontakt

Dr. Alexander von Rhein - rhein@cgse.eu - +49 159 04517754
@alexvonrhein
www.cgse.eu/en/blog

CQSE GmbH

Centa-Hafenbrdad|-Straf3e 59 CQSE
81249 Minchen

Continuous Quality in Software Engineering

