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Security Threat: System Command Injection
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Most Common Security Threats in SAP Systems

 Code execution
 Cross-client access
 Directory traversal
 Database modification
 Authentication flaws
 Open SQL injection

Injection/leak attacks



Security Situation in SAP systems

 83% Forbes 500 companies use SAP (mainly ERP systems)
 Customization

 SAP systems are extended with custom code written in ABAP
 In-house, closed-world development

[Business Risk Illustration, Onapsis]



Analysis View – Closed World System

 Source (Report Parameter)

 Sinks
 System-Commands

 CALL ‘SYSTEM‘ ID ‘COMMAND‘
 Directory Traversal

 OPEN DATASET
 ABAP Program Generation

 INSERT REPORT
 GENERATE SUBROUTINE POOL

 Loop iteration limits
 DO input TIMES. … ENDDO.

 … 21 pattern in total

source

sink



ABAP in 1 minute

Object, can be
invoked by user

Parameter of the report

„Main method“ of the report

Class declaration

Class implementation
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Simple Security Threat Scenario

SAP ERP

Database



Data Injection

Data Leak



Trivial Checks for Deprecated Sinks

 Local analysis (typically method level)
 Fast
 Here: Based on discouraged statements



Taint-Propagation Analysis

 Detailed taint-propagation analysis
 Requires much more time and memory
 Data-flow analysis
 Tracks user input to unsecure statements
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Global inter-procedural taint-propagation analysis

 Complex data flow
 Crossing method boudaries
 Multiple files

 Large, active code bases
 Incremental analysis
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1659 LOC / 1301 SLOC



Findings im Benchmark

 Trivial Checks
 12.943 yellow findings
 24.555 red findings

 Taint Analysis
 7.251 taint-analysis findings
 Some methods (2%) had to be ignored (cycles, complexity)



Performance

 Performance benchmark
 12.600.000 source lines of code from customers

 Some projects use git, so they have actually more code
 with 270.000 methods

 3 hours initial analysis time
 Analysis time for single commit depends on number of „touched“ methods

 Typically few seconds





Beyond ABAP

 ABAP
 Closed world
 Client/Server setting
 Database and Server-Filesystem are typically trusted
 Entropy of identifiers (method names, variable names) is high

 Java, C#, …
 No closed-world scenario
 Who defines the taint sources and sinks?
 More use of high-level programming (inheritance, lambdas, …)
 Many similar variable and method names
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GUI.Base
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• = Modified & untested
• = Added & untested
• = Unchanged
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Conclusion

Static analysis can find many attack scenarios at development
time.

Security attacks are often injection/leak attacks.

(Near) real-time feedback is vital for acceptance. Our solution
is incremental analysis.

Wanted: Evaluation partners for security analyses (and 
teamscale in general).
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